要按value_counts()将一个数据框划分为两个数据框,可以按照以下步骤进行处理:
import pandas as pd
data = {'A': ['cat', 'dog', 'dog', 'dog', 'cat'],
'B': [1, 2, 3, 3, 2]}
df = pd.DataFrame(data)
counts = df['A'].value_counts()
df1 = df[df['A'].isin(counts[counts >= 2].index)]
df2 = df[df['A'].isin(counts[counts < 2].index)]
完整的代码示例如下:
import pandas as pd
data = {'A': ['cat', 'dog', 'dog', 'dog', 'cat'],
'B': [1, 2, 3, 3, 2]}
df = pd.DataFrame(data)
counts = df['A'].value_counts()
df1 = df[df['A'].isin(counts[counts >= 2].index)]
df2 = df[df['A'].isin(counts[counts < 2].index)]
print("DataFrame 1:")
print(df1)
print("\nDataFrame 2:")
print(df2)
这样就可以将数据框df按照列A的值的频数划分为两个数据框df1和df2。