以下是一个绑定根节点的Alpha Beta剪枝算法的代码示例:
import math
# 评估函数,用于评估当前局面的分数
def evaluate(board):
# 这里使用一个简单的评估函数,返回玩家1的棋子数减去玩家2的棋子数
count1 = sum([row.count(1) for row in board])
count2 = sum([row.count(2) for row in board])
return count1 - count2
# Alpha Beta剪枝算法
def alphabeta(board, depth, alpha, beta, maximizingPlayer):
if depth == 0 or is_terminal(board):
return evaluate(board)
if maximizingPlayer:
max_eval = -math.inf
for move in generate_moves(board):
board_copy = make_move(board, move)
eval = alphabeta(board_copy, depth - 1, alpha, beta, False)
max_eval = max(max_eval, eval)
alpha = max(alpha, eval)
if alpha >= beta:
break
return max_eval
else:
min_eval = math.inf
for move in generate_moves(board):
board_copy = make_move(board, move)
eval = alphabeta(board_copy, depth - 1, alpha, beta, True)
min_eval = min(min_eval, eval)
beta = min(beta, eval)
if alpha >= beta:
break
return min_eval
# 生成所有可能的合法移动
def generate_moves(board):
moves = []
# 通过遍历棋盘的每个位置,找到可以下棋的空位
for i in range(len(board)):
for j in range(len(board[i])):
if board[i][j] == 0:
moves.append((i, j))
return moves
# 执行一个合法移动
def make_move(board, move):
i, j = move
player = 1 if sum([row.count(1) for row in board]) == sum([row.count(2) for row in board]) else 2
board_copy = [row.copy() for row in board]
board_copy[i][j] = player
return board_copy
# 判断是否游戏结束
def is_terminal(board):
# 游戏结束条件:棋盘上没有空位或任一玩家已经赢得比赛
if not any(0 in row for row in board) or evaluate(board) == math.inf or evaluate(board) == -math.inf:
return True
return False
# 示例使用
board = [[0, 0, 0],
[0, 0, 0],
[0, 0, 0]]
depth = 3
alpha = -math.inf
beta = math.inf
maximizingPlayer = True
best_move = None
max_eval = -math.inf
for move in generate_moves(board):
board_copy = make_move(board, move)
eval = alphabeta(board_copy, depth - 1, alpha, beta, False)
if eval > max_eval:
max_eval = eval
best_move = move
alpha = max(alpha, eval)
print("最佳移动:", best_move)
print("最佳分数:", max_eval)
这个代码示例是一个简化的井字棋游戏,通过Alpha Beta剪枝算法找到最优解。在示例中,使用一个评估函数来评估当前局面的分数,然后使用Alpha Beta剪枝算法来搜索最佳移动。代码中使用了递归来模拟棋局,同时使用了alpha和beta来进行剪枝,从而提高搜索效率。最终输出最佳移动和对应的分数。注意,此示例仅用于说明Alpha Beta剪枝算法的基本原理,实际应用中可能需要根据具体情况进行修改和优化。
上一篇:绑定复选框中的对象