Batch Normalization在冻结和优化之后可能会导致一些奇怪的行为,这是因为在冻结模型之后,Batch Normalization层的统计信息不再更新,可能会导致模型在测试阶段表现不佳。以下是一种解决方法,可以在冻结和优化之后继续使用Batch Normalization层的统计信息:
torch.nn.BatchNorm2d
类进行Batch Normalization。import torch
import torch.nn as nn
# 定义模型
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.fc = nn.Linear(64, 10)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
# 创建模型实例
model = MyModel()
# 训练模型
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
for epoch in range(num_epochs):
# ...
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 冻结模型
model.eval()
# 按照训练集的统计信息更新Batch Normalization层的统计信息
model.train()
for inputs, labels in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 冻结模型
model.eval()
# 使用模型进行测试
correct = 0
total = 0
for inputs, labels in test_loader:
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
print('Test Accuracy: {} %'.format(accuracy))
通过在冻结和优化之后重新设置模型为训练状态,并使用训练集的统计信息更新Batch Normalization层的统计信息,可以确保在测试阶段使用正确的统计信息,从而避免Batch Normalization在冻结和优化之后的奇怪行为。