在使用BeamRunPythonPipelineOperator时,需要配置DataflowBackend和project等参数,而且需要将参数传递给run_python_pipeline()方法来提交数据流作业。以下是一个简单的示例代码,演示如何使用BeamRunPythonPipelineOperator提交数据流作业:
from datetime import datetime
from airflow import DAG
from airflow.providers.google.cloud.operators.dataflow import BeamRunPythonPipelineOperator
default_args = {
'start_date': datetime(2022, 1, 1),
'catchup': False
}
with DAG(
dag_id='example_beam_run_python_pipeline_operator',
default_args=default_args,
schedule_interval=None,
) as dag:
def my_beam_pipeline():
import apache_beam as beam
from apache_beam.options.pipeline_options import PipelineOptions
options = PipelineOptions.from_dictionary(runner='DataflowRunner',
project='my-project-id',
region='us-central1',
temp_location='gs://my-bucket/tmp')
with beam.Pipeline(options=options) as p:
pass # Define your Beam pipeline here.
submit_beam_job = BeamRunPythonPipelineOperator(
task_id='submit_beam_job',
py_file='./my_beam_pipeline.py',
py_options=None,
runner=None,
gcp_conn_id=None,
delegate_to=None,
dataflow_default_options={
'project': 'my-project-id',
'region': 'us-central1',
'temp_location': 'gs://my-bucket/tmp'
}
)
submit_beam_job.run_python_pipeline(python_callable=my_beam_pipeline)
在上面的代码中,定义了一个名为my_beam_pipeline()的BEAM流水线作业。然后将其作为参数传递给run_python_pipeline()方法,并将DataflowBackend和project等参数传递给BeamRunPythonPipelineOperator。这将提交beam作业到Dataflow中,并在后台运行。
上一篇:BeamRunPythonPipelineOperator报告模块未找到错误。
下一篇:BeamRunPythonPipelineOperatoronDataFlowRunnerkeepsthrowingerrormissingservice_account