我们可以使用更高效的算法或者改进现有的算法来解决这个问题。一种方法是实现一种启发式算法,如禁忌搜索,来解决旅行商问题。禁忌搜索可以在不完全搜索整个解空间的情况下找到最优解。另一种方法是使用多个求解器并行化解决问题,增加计算并行度以提高求解器的效率,从而减少解决器过早退出的可能性。以下是使用禁忌搜索算法解决并行旅行商问题的Python代码示例:
class TabuSearchTSP:
def __init__(self, distance_matrix, tabu_length):
self.distance_matrix = distance_matrix
self.tabu_list = TabuList(tabu_length)
self.city_count = len(distance_matrix)
self.curr_solution = None
self.best_solution = None
self.best_fitness = float('inf')
self.neighbourhood = TwoOptSwapNeighbourhood()
self.max_iterations = 1000
self.iteration = 0
def solve(self):
self.iteration = 0
self.curr_solution = random.sample(range(self.city_count), self.city_count)
self.best_solution = self.curr_solution
self.best_fitness = self.evaluate_solution(self.curr_solution)
while self.iteration < self.max_iterations:
self.iteration += 1
neighbourhood_solutions = self.neighbourhood.explore_neighbourhood(self.curr_solution)
best_candidate_solution = neighbourhood_solutions[0]
best_candidate_fitness = self.evaluate_solution(best_candidate_solution)
for candidate_solution in neighbourhood_solutions:
candidate_fitness = self.evaluate_solution(candidate_solution)
if (candidate_solution not in self.tabu_list) and candidate_fitness < best_candidate_fitness:
best_candidate_solution = candidate_solution
best_candidate_fitness = candidate_fitness
self.curr_solution = best_candidate_solution
self.tabu_list.update(self.curr_solution)
current_fitness = self.evaluate_solution(self.curr_solution)
if current_fitness < self.best_fitness:
上一篇:并行路由-页面刷新