行列式按某行某列展开,是另一种减少矩阵阶数的算法,将n×nn\times nn×n矩阵行列式计算减少到(n−1)×(n−1)(n-1)\times(n-1)(n−1)×(n−1)的矩阵,该算法按第iii行展开的公式如下:
∣A∣=∑j=1naijAij|A|=\sum_{j=1}^na_{ij}A_{ij} ∣A∣=j=1∑naijAij
按第jjj列展开的公式如下:
∣A∣=∑i=1naijAij|A|=\sum_{i=1}^na_{ij}A_{ij} ∣A∣=i=1∑naijAij
其中AijA_{ij}Aij是代数余子式cofactor。举个例子,以下矩阵的行列式按第一列展开:
∣1−1−2−33−2−1−2−54326543∣=1×∣−2−1−2432543∣−3×∣−1−2−3432543∣−5×∣−1−2−3−2−1−2543∣−6×∣−1−2−3−2−1−2432∣=−122\begin{vmatrix}1 & -1 & -2 & -3\\ 3 & -2 & -1 & -2\\ -5 & 4 & 3 & 2\\ 6 & 5 & 4 & 3\\ \end{vmatrix}=\\1 \times \begin{vmatrix}-2 & -1 & -2\\ 4 & 3 & 2\\ 5 & 4 & 3\\ \end{vmatrix}\\-3 \times \begin{vmatrix}-1 & -2 & -3\\ 4 & 3 & 2\\ 5 & 4 & 3\\ \end{vmatrix}\\-5 \times \begin{vmatrix}-1 & -2 & -3\\ -2 & -1 & -2\\ 5 & 4 & 3\\ \end{vmatrix}\\ -6 \times \begin{vmatrix}-1 & -2 & -3\\ -2 & -1 & -2\\ 4 & 3 & 2\\ \end{vmatrix}\\=-122 13−56−1−245−2−134−3−223=1×−245−134−223−3×−145−234−323−5×−1−25−2−14−3−23−6×−1−24−2−13−3−22=−122
def cofactor_expansion(self, column=0):# 默认按第一列展开吧n = len(self.__vectors)if len(self.__vectors) == 2:return self.__vectors[0][0] * self.__vectors[1][1] - self.__vectors[0][1] * self.__vectors[1][0]result = 0for i in range(n):e = self.__vectors[column][i]result += e * self.cofactor(i, column)return result
/*** 余子式* @param line* @param column* @return*/private T minor(int line, int column) {int n = this.array.length;T[][] arr = newArray(n - 1, n - 1);for (int i = 0; i < n - 1; i++) {for (int j = 0; j < n - 1; j++) {int col = j < column ? j : j + 1;int row = i < line ? i : i + 1;arr[i][j] = this.array[row][col];}}return createMatrix(arr).cofactor_expansion(0);}/*** 代数余子式* @param line* @param column* @return*/private T cofactor(int line, int column) {final T minor = minor(line, column);return ((line + column) & 1) == 0 ? this.minor(line, column) : subtract(zeroValue(), minor);}private T determinant2x2() {final T a = multiply(this.array[0][0], this.array[1][1]);final T b = multiply(this.array[1][0], this.array[0][1]);return subtract(a, b);}public T cofactor_expansion(int line) {int n = this.array.length;if (n == 2) {return determinant2x2();}T sum = zeroValue();for (int i = 0; i < n; i++) {sum = add(sum, multiply(array[line][i], this.cofactor(line, i)));}return sum;}
在考研或期末考试时,如果遇到某一行或者某一列有很多0,可以采用这种方式减少运算量。如果没有那么多0,那么可以利用初等行变换变得某一列其余元素都是0.