在bnlearn中,计算连续数据的BIC(Bayesian Information Criterion)可以通过以下步骤进行:
library(bnlearn)
data <- read.csv("data.csv")
data <- as.data.frame(lapply(data, as.numeric))
dag <- empty.graph(nodes = colnames(data))
dag <- set.arc(dag, from = "A", to = "B") # 设置变量之间的关系
data$type <- "gaussian" # 指定连续变量的类型
fit <- bnlearn::bn.fit(dag, data = data, method = "mle") # 用最大似然法拟合数据
score <- bnlearn::score(fit, data = data, type = "bic")
完整示例代码如下:
library(bnlearn)
data <- read.csv("data.csv")
data <- as.data.frame(lapply(data, as.numeric))
dag <- empty.graph(nodes = colnames(data))
dag <- set.arc(dag, from = "A", to = "B")
data$type <- "gaussian"
fit <- bnlearn::bn.fit(dag, data = data, method = "mle")
score <- bnlearn::score(fit, data = data, type = "bic")
请注意,上述示例代码中的"data.csv"应替换为您的实际数据文件名,且数据文件应包含连续变量的数据。
上一篇:Bnlearn内存不足