在shiny中构建多元线性回归模型需要将数据加载到shiny应用程序中,然后使用lm()函数建立回归模型。下面是一个简单的多元线性回归shiny应用程序的示例代码:
UI部分:
library(shiny)
# Define the UI for the application
ui <- fluidPage(
# Application title
titlePanel("Multiple Linear Regression"),
# Sidebar with a slider input for number of cylinders
sidebarLayout(
sidebarPanel(
sliderInput("cyl",
"Number of Cylinders:",
min = 4,
max = 8,
value = 6)
),
# Show a plot of the generated distribution
mainPanel(
plotOutput("regPlot")
)
)
)
Server部分:
# Define server logic required to generate and plot a linear regression
server <- function(input, output) {
# Read the mtcars dataset into a data table
data <- reactive({
mtcars
})
# Generate the linear regression model with input$cyl as the predictor
regModel <- reactive({
lm(mpg ~ disp + hp + drat + wt + qsec, data = data())
})
# Output the linear regression plot using ggplot2
output$regPlot <- renderPlot({
require(ggplot2)
# Create a plot of predicted vs. actual values
ggplot(regModel(), aes(x = .fitted, y = .resid)) +
geom_point() +
ggtitle("Predicted vs. Actual Values") +
ylab("Residuals") +
xlab("Fitted Values")
})
}
最后,运行应用程序:
# Run the application
shinyApp(ui = ui, server = server)
这个shiny应用程序允许用户通过滑动条来选择一个输入变量(即:气缸数)并生成一个基于多元线性回归模型的散点图示意
上一篇:BuildallProjectsinaviewJenkins”改写为中文
下一篇:BuildandLinkexternaldependencywithoutvcpkginVS2022forexeproject