在处理不均衡的数据集时,可以通过多种方法来解决,包括以下几种常见的方法:
from imblearn.over_sampling import RandomOverSampler, SMOTE
# 随机过抽样
ros = RandomOverSampler(random_state=0)
X_resampled, y_resampled = ros.fit_resample(X, y)
# SMOTE
smote = SMOTE(random_state=0)
X_resampled, y_resampled = smote.fit_resample(X, y)
from imblearn.under_sampling import RandomUnderSampler, NearMiss
# 随机欠抽样
rus = RandomUnderSampler(random_state=0)
X_resampled, y_resampled = rus.fit_resample(X, y)
# NearMiss
nearmiss = NearMiss(random_state=0)
X_resampled, y_resampled = nearmiss.fit_resample(X, y)
from imblearn.ensemble import BalancedBaggingClassifier, BalancedRandomForestClassifier
# BalancedBaggingClassifier
bbc = BalancedBaggingClassifier(random_state=0)
bbc.fit(X, y)
# BalancedRandomForestClassifier
brf = BalancedRandomForestClassifier(random_state=0)
brf.fit(X, y)
class_weight
参数来设置类别权重。from sklearn.svm import SVC
# 使用class_weight参数
svc = SVC(class_weight='balanced')
svc.fit(X, y)
这些方法可以根据具体情况选择使用,或者结合使用,以提高对不均衡数据集的处理效果。
上一篇:布局内容容器不随其内容增长
下一篇:不均匀的边框间距