以下是一种部署作为服务创建的SageMaker终点的解决方法,包含了代码示例:
import sagemaker
from sagemaker import get_execution_role
from sagemaker.amazon.amazon_estimator import get_image_uri
role = get_execution_role()
container = get_image_uri(boto3.Session().region_name, 'xgboost')
s3_model_location = 's3://your-s3-bucket/model.tar.gz'
model = sagemaker.model.Model(model_data=s3_model_location,
image=container,
role=role,
sagemaker_session=sagemaker.Session())
endpoint_config_name = 'your-endpoint-config-name'
instance_type = 'ml.m4.xlarge'
endpoint_config = sagemaker.session.s3_endpoint_config(s3_model_location,
endpoint_config_name,
instance_type=instance_type)
endpoint_name = 'your-endpoint-name'
sagemaker_session.create_endpoint(endpoint_name=endpoint_name,
config_name=endpoint_config_name)
sagemaker_session.wait_for_endpoint(endpoint=endpoint_name)
from sagemaker.predictor import RealTimePredictor
from sagemaker.serializers import CSVSerializer
predictor = RealTimePredictor(endpoint=endpoint_name,
sagemaker_session=sagemaker.Session(),
serializer=CSVSerializer())
data = '1,2,3,4' # 输入数据
response = predictor.predict(data)
print(response)
这样就完成了部署作为服务创建的SageMaker终点,并使用终点进行推理的过程。