使用Apache Airflow和Python编写DAG任务,其中有不同的操作符和触发器可以实现非线性DAG执行。
示例代码:
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from airflow.operators.dummy_operator import DummyOperator
from datetime import datetime, timedelta
default_args = {
'owner': 'airflow',
'depends_on_past': False,
'start_date': datetime(2021, 1, 1),
'email': ['airflow@example.com'],
'email_on_failure': False,
'email_on_retry': False,
'retries': 1,
'retry_delay': timedelta(minutes=5),
}
dag = DAG(
'non_linear_dag_example',
default_args=default_args,
description='A non-linear DAG example',
schedule_interval=timedelta(days=1)
)
start = DummyOperator(task_id='start', dag=dag)
task1 = BashOperator(
task_id='task1',
bash_command='echo "Task 1"',
dag=dag,
)
task2 = BashOperator(
task_id='task2',
bash_command='echo "Task 2"',
dag=dag,
)
task3 = BashOperator(
task_id='task3',
bash_command='echo "Task 3"',
dag=dag,
)
task4 = BashOperator(
task_id='task4',
bash_command='echo "Task 4"',
dag=dag,
)
end = DummyOperator(task_id='end', dag=dag)
start >> task1 >> [task2, task3] >> task4 >> end
task2 << task3
上述代码中使用了DummyOperator和BashOperator来创建任务,它们可以实现DAG的非线性执行。任务图如下所示:
start -> task1 -> task2 -> task4 -> end
\-> task3 -/
其中,start、task2、task4和end是DummyOperator的实例,而task1和task3则是BashOperator的实例。在任务图中,箭头指向的任务需要先于指向箭头的任务执行,当一个