在pytorch中,批量大小(batch size)是指在神经网络中一次性输入的样本数目。在神经网络训练时,不同的批量大小可能会带来不同的测试结果,因此需要进行调整。
下面是一个示例代码,演示如何在pytorch中使用不同的批处理大小进行测试,并比较它们的结果:
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor
from tqdm import tqdm
batch_sizes = [16, 32, 64, 128]
# 加载MNIST数据集
test_data = MNIST(download=True, root=".").test_data.float()
test_labels = MNIST(download=True, root=".").test_labels
# 转换数据
test_data = ToTensor()(test_data).unsqueeze(1)
test_loader = DataLoader(test_data, batch_size=len(test_data))
# 定义模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(784, 10)
def forward(self, x):
x = x.view(-1, 784)
x = self.fc1(x)
return x
# 检查不同批处理大小的模型结果
for batch_size in batch_sizes:
model = Net()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
criterion = nn.CrossEntropyLoss()
test_loader = DataLoader(test_data, batch_size=batch_size)
correct = 0
total = 0
model.eval()
with torch.no_grad():
for images in tqdm(test_loader):
images = images.to(device)
labels = test_labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f"Test Accuracy with batch size {batch_size}: {(100 * correct