要将一个对象检测模型的冻结图转换为.tflite格式,您可以按照以下步骤进行操作:
!pip install tensorflow
!pip install tensorflow-object-detection-api
import tensorflow as tf
from object_detection.utils import config_util
from object_detection.builders import model_builder
config_path = 'path/to/model.config'
frozen_graph_path = 'path/to/frozen_graph.pb'
pipeline_config = config_util.get_configs_from_pipeline_file(config_path)
model_config = pipeline_config['model']
detection_model = model_builder.build(model_config=model_config, is_training=False)
def convert_to_tflite(frozen_graph_path, output_tflite_path):
converter = tf.lite.TFLiteConverter.from_frozen_graph(
frozen_graph_path,
input_arrays=['image_tensor'],
output_arrays=['detection_boxes', 'detection_classes', 'detection_scores', 'num_detections']
)
tflite_model = converter.convert()
with tf.io.gfile.GFile(output_tflite_path, 'wb') as f:
f.write(tflite_model)
output_tflite_path = 'path/to/output.tflite'
convert_to_tflite(frozen_graph_path, output_tflite_path)
在上述代码中,假设您已经有一个模型的配置文件(model.config
)和冻结图(frozen_graph.pb
)。转换函数convert_to_tflite
使用tf.lite.TFLiteConverter.from_frozen_graph
方法将冻结图转换为.tflite格式。输入和输出数组的名称可以根据您的模型进行调整。
请注意,这个示例假设您已经安装了TensorFlow和Object Detection API库,并且已经正确配置了模型的配置文件和冻结图。确保您已经提供正确的文件路径,并根据实际情况进行调整。