给定一个候选人编号的集合 candidates
和一个目标数 target
,找出 candidates
中所有可以使数字和为 target
的组合。
candidates 中的每个数字在每个组合中只能使用 一次 。
注意:解集不能包含重复的组合。
输入: candidates = [10,1,2,7,6,1,5], target = 8,输出:[[1,1,6],[1,2,5],[1,7],[2,6]]
输入: candidates = [2,5,2,1,2], target = 5,输出:[[1,2,2],[5]]
impl Solution {pub fn combination_sum2(candidates: Vec, target: i32) -> Vec> {fn dfs(nums: &Vec, target: i32, num: i32, row: &mut Vec, ans: &mut Vec>) {if target == 0 {// 符合条件的一个组合ans.push(row.clone());return;}if num as usize == nums.len() || target < num {// 尝试到底,开始回溯return;}let count = nums[num as usize].min(target / num);(1..count + 1).for_each(|i| {// 选择当前下标数字row.push(num);dfs(nums, target - num * i, num + 1, row, ans);});row.resize(row.len() - count as usize, 0);// 跳过当前下标数字dfs(nums, target, num + 1, row, ans);}// 1 <= candidates[i] <= 50let mut nums = vec![0; 51];candidates.iter().for_each(|&c| {nums[c as usize] += 1;});let mut ans = Vec::new();// 递归深度优先回溯套娃大法dfs(&nums, target, 1, &mut Vec::new(), &mut ans);return ans;}
}
func combinationSum2(candidates []int, target int) [][]int {var ans [][]int// 1 <= candidates[i] <= 50nums := make([]int, 51)for _, c := range candidates {nums[c]++}var dfs func(int, int, []int)dfs = func(target int, num int, row []int) {if target == 0 {// 符合条件的一个组合ans = append(ans, append([]int{}, row...))return}if num == len(nums) || target < num {// 尝试到底,开始回溯return}count := target / numif nums[num] < count {count = nums[num]}// 选择当前下标数字for i := 1; i <= count; i++ {row = append(row, num)dfs(target-num*i, num+1, row)}row = row[:len(row)-count]// 跳过当前下标数字dfs(target, num+1, row)}dfs(target, 1, []int{})return ans
}
class Solution {
private:void dfs(vector& nums, int target, int num, vector& row, vector>& ans) {if (target == 0) {// 符合条件的一个组合ans.emplace_back(row);return;}if (num == nums.size() || target < num) {// 尝试到底,开始回溯return;}int count = min(target / num, nums[num]);for (int i = 1; i <= count; ++i) {// 选择当前下标数字row.emplace_back(num);dfs(nums, target - num * i, num + 1, row, ans);}for (int i = 1; i <= count; ++i) {row.pop_back();}// 跳过当前下标数字dfs(nums, target, num + 1, row, ans);}
public:vector> combinationSum2(vector& candidates, int target) {vector> ans;vector row;vector nums(51);for (int c: candidates) {++nums[c];}dfs(nums, target, 1, row, ans);return ans;}
};
void dfs(int *nums, int numsSize, int target, int num, int *row, int rowSize, int **ans, int *returnSize,int **returnColumnSizes) {if (target == 0) {// 符合条件的一个组合ans[*returnSize] = (int *) malloc(sizeof(int) * rowSize);memcpy(ans[*returnSize], row, sizeof(int) * rowSize);(*returnColumnSizes)[*returnSize] = rowSize;++(*returnSize);return;}if (num == numsSize || target < num) {// 尝试到底,开始回溯return;}int count = fmin(target / num, nums[num]);for (int i = 1; i <= count; ++i) {// 选择当前下标数字row[rowSize + i - 1] = num;dfs(nums, numsSize, target - num * i, num + 1, row, rowSize + i, ans, returnSize, returnColumnSizes);}// 跳过当前下标数字dfs(nums, numsSize, target, num + 1, row, rowSize, ans, returnSize, returnColumnSizes);
}/*** Return an array of arrays of size *returnSize.* The sizes of the arrays are returned as *returnColumnSizes array.* Note: Both returned array and *columnSizes array must be malloced, assume caller calls free().*/
int **combinationSum2(int *candidates, int candidatesSize, int target, int *returnSize, int **returnColumnSizes) {*returnSize = 0;*returnColumnSizes = (int *) malloc(sizeof(int) * 150);int **ans = (int **) malloc(sizeof(int *) * 150);int row[target];int nums[51];memset(nums, 0, sizeof(nums));for (int i = 0; i < candidatesSize; ++i) {++nums[candidates[i]];}dfs(nums, 51, target, 1, row, 0, ans, returnSize, returnColumnSizes);return ans;
}
class Solution:def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]:ans = []nums = [0] * 51for c in candidates:nums[c] += 1def dfs(target: int, num: int, row: List[int]):if target == 0:# 符合条件的一个组合ans.append(row.copy())returnif num == len(nums) or target < num:# 尝试到底,开始回溯returncount = min(target // num, nums[num])for i in range(1, count + 1):row.append(num)dfs(target - num * i, num + 1, row)for i in range(1, count + 1):row.pop()# 跳过当前下标数字dfs(target, num + 1, row)dfs(target, 1, [])return ans
class Solution {public List> combinationSum2(int[] candidates, int target) {// 1 <= candidates[i] <= 50int[] nums = new int[51];for (int c : candidates) {++nums[c];}List> ans = new ArrayList<>();// 递归深度优先回溯套娃大法this.dfs(nums, target, 1, new LinkedList<>(), ans);return ans;}private void dfs(int[] nums, int target, int num, Deque row, List> ans) {if (target == 0) {// 符合条件的一个组合ans.add(new ArrayList<>(row));return;}if (num == nums.length || target < num) {// 尝试到底,开始回溯return;}int count = Math.min(target / num, nums[num]);for (int i = 1; i <= count; ++i) {// 选择当前下标数字row.addLast(num);this.dfs(nums, target - num * i, num + 1, row, ans);}for (int i = 1; i <= count; ++i) {row.pollLast();}// 跳过当前下标数字this.dfs(nums, target, num + 1, row, ans);}
}
非常感谢你阅读本文~
欢迎【点赞】【收藏】【评论】~
放弃不难,但坚持一定很酷~
希望我们大家都能每天进步一点点~
本文由 二当家的白帽子:https://le-yi.blog.csdn.net/ 博客原创~