按组对Pyspark数据帧进行归一化
创始人
2024-09-02 20:31:23
0

要按组对Pyspark数据帧进行归一化,可以使用StandardScalerWindow函数来实现。以下是一个示例代码:

from pyspark.sql import SparkSession
from pyspark.ml.feature import StandardScaler
from pyspark.sql.window import Window
from pyspark.sql.functions import row_number

# 创建SparkSession
spark = SparkSession.builder.getOrCreate()

# 创建示例数据
data = [(1, "A", 10), (1, "B", 20), (2, "A", 30), (2, "B", 40)]
df = spark.createDataFrame(data, ["group", "category", "value"])

# 定义窗口函数,按组和类别排序
windowSpec = Window.partitionBy("group", "category").orderBy("value")

# 添加行号
df = df.withColumn("row_number", row_number().over(windowSpec))

# 计算每个组和类别的均值和标准差
stats = df.groupBy("group", "category").agg({"value": "avg", "value": "stddev"}).withColumnRenamed("avg(value)", "avg_value").withColumnRenamed("stddev_samp(value)", "std_value")

# 将统计信息与原始数据合并
df = df.join(stats, ["group", "category"], "left_outer")

# 定义归一化函数
def normalize(value, avg_value, std_value):
    return (value - avg_value) / std_value

# 注册归一化函数为UDF
normalize_udf = spark.udf.register("normalize", normalize)

# 应用归一化函数到数据帧
df = df.withColumn("normalized_value", normalize_udf(df.value, df.avg_value, df.std_value))

# 显示归一化结果
df.show()

这个示例代码首先创建了一个包含组、类别和值的数据帧。然后使用窗口函数和行号为每个组和类别的值计算均值和标准差。接下来,定义了一个归一化函数,并将其注册为UDF。最后,应用归一化函数到数据帧,并显示归一化结果。

相关内容

热门资讯

【NI Multisim 14...   目录 序言 一、工具栏 🍊1.“标准”工具栏 🍊 2.视图工具...
银河麒麟V10SP1高级服务器... 银河麒麟高级服务器操作系统简介: 银河麒麟高级服务器操作系统V10是针对企业级关键业务...
不能访问光猫的的管理页面 光猫是现代家庭宽带网络的重要组成部分,它可以提供高速稳定的网络连接。但是,有时候我们会遇到不能访问光...
AWSECS:访问外部网络时出... 如果您在AWS ECS中部署了应用程序,并且该应用程序需要访问外部网络,但是无法正常访问,可能是因为...
Android|无法访问或保存... 这个问题可能是由于权限设置不正确导致的。您需要在应用程序清单文件中添加以下代码来请求适当的权限:此外...
北信源内网安全管理卸载 北信源内网安全管理是一款网络安全管理软件,主要用于保护内网安全。在日常使用过程中,卸载该软件是一种常...
AWSElasticBeans... 在Dockerfile中手动配置nginx反向代理。例如,在Dockerfile中添加以下代码:FR...
AsusVivobook无法开... 首先,我们可以尝试重置BIOS(Basic Input/Output System)来解决这个问题。...
ASM贪吃蛇游戏-解决错误的问... 要解决ASM贪吃蛇游戏中的错误问题,你可以按照以下步骤进行:首先,确定错误的具体表现和问题所在。在贪...
月入8000+的steam搬砖... 大家好,我是阿阳 今天要给大家介绍的是 steam 游戏搬砖项目,目前...