Apache Flink是一个开源的流处理框架,它提供了ProcessWindowFunction来对窗口中的元素进行处理。下面是一个使用ProcessWindowFunction实现的示例代码:
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
public class ProcessWindowFunctionExample {
public static void main(String[] args) throws Exception {
// 设置执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
// 创建数据流
DataStream input = env.socketTextStream("localhost", 9999);
// 转换数据流为元组
DataStream> tuples = input.map(new MapFunction>() {
@Override
public Tuple2 map(String value) throws Exception {
String[] split = value.split(",");
return new Tuple2<>(split[0], Integer.parseInt(split[1]));
}
});
// 对元组进行分组并窗口化
DataStream result = tuples
.keyBy(tuple -> tuple.f0)
.window(TumblingEventTimeWindows.of(Time.seconds(5)))
.process(new MyProcessWindowFunction());
// 打印结果
result.print();
// 执行任务
env.execute("ProcessWindowFunction Example");
}
public static class MyProcessWindowFunction extends ProcessWindowFunction, String, String, TimeWindow> {
@Override
public void process(String key, Context context, Iterable> input, Collector out) throws Exception {
int sum = 0;
int count = 0;
for (Tuple2 tuple : input) {
sum += tuple.f1;
count++;
}
double avg = (double) sum / count;
out.collect("Key: " + key + ", Window: " + context.window() + ", Average: " + avg);
}
}
}
在这个示例中,我们首先设置了执行环境,并创建了一个socket数据流。然后,我们使用MapFunction将输入数据流转换为元组。接下来,我们对元组进行分组并使用TumblingEventTimeWindows定义了一个5秒的滚动窗口。最后,我们使用自定义的MyProcessWindowFunction对窗口中的元素进行处理,并将结果打印出来。
在MyProcessWindowFunction中,我们通过迭代窗口中的元素,计算它们的和以及数量。然后,我们计算平均值并将结果收集到输出中。
要运行这个示例,您需要启动一个socket服务器并将数据发送到localhost:9999。然后,您可以运行上述代码来处理数据并打印结果。