这个问题通常出现在使用AWS Sagemaker调试器示例时。最可能的原因是调试器示例中需要传递某些参数,但是这些参数未正确设置。以下是解决这个问题的步骤:
1.检查您的代码中是否有缺少的参数。可以查看AWS Sagemaker调试器示例中相应的文件并对比您的代码。
2.确保您在使用调试器时正确设置了所有必需的环境变量。比如,您需要设置调试器所需的存储桶名称和区域。
以下是一个示例代码,展示如何正确设置环境变量以避免TypeError缺少参数错误:
import os
import sagemaker as sage
from sagemaker.debugger import DebuggerHookConfig, TensorBoardOutputConfig, CollectionConfig, DebuggerHook()
BUCKET_NAME = ''
REGION = ''
ROLE = ''
JOB_NAME = ''
# set the environment variables
os.environ['AWS_REGION'] = REGION
os.environ['SAGEMAKER_OUTPUT_S3_BUCKET'] = BUCKET_NAME
os.environ['SAGEMAKER_OUTPUT_S3_DIR'] = ''
os.environ['SAGEMAKER_TENSORBOARD_OUTPUT'] = 's3://{}/{}/{}'.format(BUCKET_NAME,'', JOB_NAME)
os.environ['SAGEMAKER_ENABLE_INTER_CONTAINER_TRAFFIC'] = '1'
# create an instance of sagemaker debugger hook
hook_config = DebuggerHookConfig(
hook_parameters={"save_interval": "10", "save_all": "true"},
collection_configs=[
CollectionConfig(name="weights")])
hook = DebuggerHook.create_from_env(hook_config=hook_config)
# configure the tensorboard output
tensorboard_config = TensorBoardOutputConfig(
s3_output_path='s3://{}/{}/{}'.format(BUCKET_NAME,'', JOB_NAME))
# create an instance of sagemaker estimator
estimator = sage.estimator.Estimator(
image_name='',
role=ROLE,
train_instance_count=1,
train_instance_type='ml.p3.2xlarge',
base_job_name=JOB_NAME,
output_path='s3://{}/{}/{}'.format(BUCKET_NAME,'', JOB_NAME),
train_use_spot_instances=False,
train_max_wait=3600,
train_volume_size=50,
debugger_hook_config=hook_config,
tensorboard