OpenCV图像处理——光流估计
创始人
2024-03-06 16:43:20
0

总目录

图像处理总目录←点击这里

二十二、光流估计

22.1、原理

光流 是空间运动物体在观测成像平面上的像素运动的“瞬时速度”,根据各个像素点的速度矢量特征,可以对图像进行动态分析,例如目标跟踪。

  • 亮度恒定:同一点随着时间的变化,其亮度不会发生改变。
  • 小运动:随着时间的变化不会引起位置的剧烈变化,只有小运动情况下才能用前后帧之间单位位置变化引起的灰度变化去近似灰度对位置的偏导数。
  • 空间一致:一个场景上邻近的点投影到图像上也是邻近点,且邻近点速度一致。因为光流法基本方程约束只有一个,而要求x,y方向的速度,有两个未知变量。所以需要连立n多个方程求解。

在这里插入图片描述

在这里插入图片描述

22.2、Lucas-Kanade 算法

  • I 为像素点
  • t 为某一时刻
  • (x,y)为坐标点

在这里插入图片描述

如何求解方程组呢?(两个未知数,u和v)

看起来一个像素点根本不够,在物体移动过程中还有哪些特性呢?

在这里插入图片描述

22.3、代码实现

cv2.calcOpticalFlowPyrLK():

参数:

  • prevImage 前一帧图像

  • nextImage 当前帧图像

  • prevPts 待跟踪的特征点向量

  • winSize 搜索窗口的大小

  • maxLevel 最大的金字塔层数

返回:

  • nextPts 输出跟踪特征点向量

  • status 特征点是否找到,找到的状态为1,未找到的状态为0

详细注释已在代码中展示

import numpy as np
import cv2cap = cv2.VideoCapture('test.avi')# 角点检测所需参数
feature_params = dict( maxCorners = 100,qualityLevel = 0.3,minDistance = 7)# lucas kanade参数
lk_params = dict( winSize  = (15,15), maxLevel = 2)# 随机颜色条
color = np.random.randint(0,255,(100,3))# 拿到第一帧图像
ret, old_frame = cap.read()
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
# 返回所有检测特征点,需要输入图像,角点最大数量(效率),品质因子(特征值越大的越好,来筛选)
# 距离相当于这区间有比这个角点强的,就不要这个弱的了
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params)# 创建一个mask
mask = np.zeros_like(old_frame)# 输出视频
fourcc = cv2.VideoWriter_fourcc(*'XVID')
size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
out = cv2.VideoWriter('result.avi', fourcc, 10.0, size)while ret:ret,frame = cap.read()if not ret:breakframe_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# 需要传入前一帧和当前图像以及前一帧检测到的角点p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)# st=1表示good_new = p1[st==1]good_old = p0[st==1]# 绘制轨迹for i,(new,old) in enumerate(zip(good_new,good_old)):a,b = new.ravel()c,d = old.ravel()mask = cv2.line(mask, (int(a),int(b)),(int(c),int(d)), color[i].tolist(), 2)frame = cv2.circle(frame,(int(a),int(b)),5,color[i].tolist(),-1)img = cv2.add(frame,mask)out.write(img)# 更新old_gray = frame_gray.copy()p0 = good_new.reshape(-1,1,2)cv2.destroyAllWindows()
out.release()
cap.release()

在这里插入图片描述

新出来的人没有被跟踪(因为只在第一帧进行检测角点,可以进行优化)

22.4、原视频

目标跟踪经典视频

相关内容

热门资讯

AWSECS:访问外部网络时出... 如果您在AWS ECS中部署了应用程序,并且该应用程序需要访问外部网络,但是无法正常访问,可能是因为...
AWSElasticBeans... 在Dockerfile中手动配置nginx反向代理。例如,在Dockerfile中添加以下代码:FR...
银河麒麟V10SP1高级服务器... 银河麒麟高级服务器操作系统简介: 银河麒麟高级服务器操作系统V10是针对企业级关键业务...
北信源内网安全管理卸载 北信源内网安全管理是一款网络安全管理软件,主要用于保护内网安全。在日常使用过程中,卸载该软件是一种常...
AWR报告解读 WORKLOAD REPOSITORY PDB report (PDB snapshots) AW...
AWS管理控制台菜单和权限 要在AWS管理控制台中创建菜单和权限,您可以使用AWS Identity and Access Ma...
​ToDesk 远程工具安装及... 目录 前言 ToDesk 优势 ToDesk 下载安装 ToDesk 功能展示 文件传输 设备链接 ...
群晖外网访问终极解决方法:IP... 写在前面的话 受够了群晖的quickconnet的小水管了,急需一个新的解决方法&#x...
不能访问光猫的的管理页面 光猫是现代家庭宽带网络的重要组成部分,它可以提供高速稳定的网络连接。但是,有时候我们会遇到不能访问光...
Azure构建流程(Power... 这可能是由于配置错误导致的问题。请检查构建流程任务中的“发布构建制品”步骤,确保正确配置了“Arti...