TypeScript 与 JavaScript 的区别
下载Node.js
安装Node.js
使用npm全局安装typescript
创建一个ts文件
使用tsc对ts文件进行编译
进入命令行
进入ts文件所在目录
执行命令:tsc xxx.ts
类型声明
类型声明是TS非常重要的一个特点
通过类型声明可以指定TS中变量(参数、形参)的类型
指定类型后,当为变量赋值时,TS编译器会自动检查值是否符合类型声明,符合则赋值,否则报错
简而言之,类型声明给变量设置了类型,使得变量只能存储某种类型的值
语法:
let 变量: 类型;let 变量: 类型 = 值;function fn(参数: 类型, 参数: 类型): 类型{...
}
自动类型判断
类型:
类型 | 例子 | 描述 |
---|---|---|
number | 1, -33, 2.5 | 任意数字 |
string | ‘hi’, “hi”, hi | 任意字符串 |
boolean | true、false | 布尔值true或false |
字面量 | 其本身 | 限制变量的值就是该字面量的值 |
any | * | 任意类型 |
unknown | * | 类型安全的any |
void | 空值(undefined) | 没有值(或undefined) |
never | 没有值 | 不能是任何值 |
object | {name:‘孙悟空’} | 任意的JS对象 |
array | [1,2,3] | 任意JS数组 |
tuple | [4,5] | 元素,TS新增类型,固定长度数组 |
enum | enum{A, B} | 枚举,TS中新增类型 |
number
let decimal: number = 6;
let hex: number = 0xf00d;
let binary: number = 0b1010;
let octal: number = 0o744;
let big: bigint = 100n;
boolean
let isDone: boolean = false;
string
let color: string = "blue";
color = 'red';let fullName: string = `Bob Bobbington`;
let age: number = 37;
let sentence: string = `Hello, my name is ${fullName}.I'll be ${age + 1} years old next month.`;
字面量
也可以使用字面量去指定变量的类型,通过字面量可以确定变量的取值范围
let color: 'red' | 'blue' | 'black';
let num: 1 | 2 | 3 | 4 | 5;
any
let d: any = 4;
d = 'hello';
d = true;
unknown
let notSure: unknown = 4;
notSure = 'hello';
void
let unusable: void = undefined;
never
function error(message: string): never {throw new Error(message);
}
object(没啥用)
let obj: object = {};
array
let list: number[] = [1, 2, 3];
let list: Array = [1, 2, 3];
tuple
let x: [string, number];
x = ["hello", 10];
enum
enum Color {Red,Green,Blue,
}
let c: Color = Color.Green;enum Color {Red = 1,Green,Blue,
}
let c: Color = Color.Green;enum Color {Red = 1,Green = 2,Blue = 4,
}
let c: Color = Color.Green;
类型断言
有些情况下,变量的类型对于我们来说是很明确,但是TS编译器却并不清楚,此时,可以通过类型断言来告诉编译器变量的类型,断言有两种形式:
第一种
let someValue: unknown = "this is a string";
let strLength: number = (someValue as string).length;
第二种
let someValue: unknown = "this is a string";
let strLength: number = (someValue).length;
自动编译文件
编译文件时,使用 -w 指令后,TS编译器会自动监视文件的变化,并在文件发生变化时对文件进行重新编译。
示例:
tsc xxx.ts -w
自动编译整个项目
如果直接使用tsc指令,则可以自动将当前项目下的所有ts文件编译为js文件。
但是能直接使用tsc命令的前提时,要先在项目根目录下创建一个ts的配置文件 tsconfig.json
tsconfig.json是一个JSON文件,添加配置文件后,只需只需 tsc 命令即可完成对整个项目的编译
配置选项:
include
定义希望被编译文件所在的目录
默认值:[“**/*”]
示例:
"include":["src/**/*", "tests/**/*"]
上述示例中,所有src目录和tests目录下的文件都会被编译
exclude
定义需要排除在外的目录
默认值:[“node_modules”, “bower_components”, “jspm_packages”]
示例:
"exclude": ["./src/hello/**/*"]
上述示例中,src下hello目录下的文件都不会被编译
extends
定义被继承的配置文件
示例:
"extends": "./configs/base"
上述示例中,当前配置文件中会自动包含config目录下base.json中的所有配置信息
files
指定被编译文件的列表,只有需要编译的文件少时才会用到
示例:
"files": ["core.ts","sys.ts","types.ts","scanner.ts","parser.ts","utilities.ts","binder.ts","checker.ts","tsc.ts"]
列表中的文件都会被TS编译器所编译
compilerOptions
编译选项是配置文件中非常重要也比较复杂的配置选项
在compilerOptions中包含多个子选项,用来完成对编译的配置
项目选项
target
设置ts代码编译的目标版本
可选值:
示例:
"compilerOptions": {"target": "ES6"
}
如上设置,我们所编写的ts代码将会被编译为ES6版本的js代码
lib
指定代码运行时所包含的库(宿主环境)
可选值:
示例:
"compilerOptions": {"target": "ES6","lib": ["ES6", "DOM"],"outDir": "dist","outFile": "dist/aa.js"
}
module
设置编译后代码使用的模块化系统
可选值:
示例:
"compilerOptions": {"module": "CommonJS"
}
outDir
编译后文件的所在目录
默认情况下,编译后的js文件会和ts文件位于相同的目录,设置outDir后可以改变编译后文件的位置
示例:
"compilerOptions": {"outDir": "dist"
}
设置后编译后的js文件将会生成到dist目录
outFile
将所有的文件编译为一个js文件
默认会将所有的编写在全局作用域中的代码合并为一个js文件,如果module制定了None、System或AMD则会将模块一起合并到文件之中
示例:
"compilerOptions": {"outFile": "dist/app.js"
}
rootDir
指定代码的根目录,默认情况下编译后文件的目录结构会以最长的公共目录为根目录,通过rootDir可以手动指定根目录
示例:
"compilerOptions": {"rootDir": "./src"
}
allowJs
checkJs
是否对js文件进行检查
示例:
"compilerOptions": {"allowJs": true,"checkJs": true
}
removeComments
noEmit
sourceMap
严格检查
额外检查
高级
通常情况下,实际开发中我们都需要使用构建工具对代码进行打包,TS同样也可以结合构建工具一起使用,下边以webpack为例介绍一下如何结合构建工具使用TS。
步骤:
初始化项目
npm init -y
下载构建工具
npm i -D webpack webpack-cli webpack-dev-server typescript ts-loader clean-webpack-plugin
根目录下创建webpack的配置文件webpack.config.js
const path = require("path");
const HtmlWebpackPlugin = require("html-webpack-plugin");
const { CleanWebpackPlugin } = require("clean-webpack-plugin");module.exports = {optimization:{minimize: false // 关闭代码压缩,可选},entry: "./src/index.ts",devtool: "inline-source-map",devServer: {contentBase: './dist'},output: {path: path.resolve(__dirname, "dist"),filename: "bundle.js",environment: {arrowFunction: false // 关闭webpack的箭头函数,可选}},resolve: {extensions: [".ts", ".js"]},module: {rules: [{test: /\.ts$/,use: {loader: "ts-loader" },exclude: /node_modules/}]},plugins: [new CleanWebpackPlugin(),new HtmlWebpackPlugin({title:'TS测试'}),]}
根目录下创建tsconfig.json,配置可以根据自己需要
{"compilerOptions": {"target": "ES2015","module": "ES2015","strict": true}
}
修改package.json添加如下配置
{...略..."scripts": {"test": "echo \"Error: no test specified\" && exit 1","build": "webpack","start": "webpack serve --open chrome.exe"},...略...
}
在src下创建ts文件,并在并命令行执行npm run build
对代码进行编译,或者执行npm start
来启动开发服务器
经过一系列的配置,使得TS和webpack已经结合到了一起,除了webpack,开发中还经常需要结合babel来对代码进行转换以使其可以兼容到更多的浏览器,在上述步骤的基础上,通过以下步骤再将babel引入到项目中。
安装依赖包:
npm i -D @babel/core @babel/preset-env babel-loader core-js
修改webpack.config.js配置文件
...略...
module: {rules: [{test: /\.ts$/,use: [{loader: "babel-loader",options:{presets: [["@babel/preset-env",{"targets":{"chrome": "58","ie": "11"},"corejs":"3","useBuiltIns": "usage"}]]}},{loader: "ts-loader",}],exclude: /node_modules/}]
}
...略...
如此一来,使用ts编译后的文件将会再次被babel处理,使得代码可以在大部分浏览器中直接使用,可以在配置选项的targets中指定要兼容的浏览器版本。
面向对象是程序中一个非常重要的思想,它被很多同学理解成了一个比较难,比较深奥的问题,其实不然。面向对象很简单,简而言之就是程序之中所有的操作都需要通过对象来完成。
一切操作都要通过对象,也就是所谓的面向对象,那么对象到底是什么呢?这就要先说到程序是什么,计算机程序的本质就是对现实事物的抽象,抽象的反义词是具体,比如:照片是对一个具体的人的抽象,汽车模型是对具体汽车的抽象等等。程序也是对事物的抽象,在程序中我们可以表示一个人、一条狗、一把枪、一颗子弹等等所有的事物。一个事物到了程序中就变成了一个对象。
在程序中所有的对象都被分成了两个部分数据和功能,以人为例,人的姓名、性别、年龄、身高、体重等属于数据,人可以说话、走路、吃饭、睡觉这些属于人的功能。数据在对象中被成为属性,而功能就被称为方法。所以简而言之,在程序中一切皆是对象。
要想面向对象,操作对象,首先便要拥有对象,那么下一个问题就是如何创建对象。要创建对象,必须要先定义类,所谓的类可以理解为对象的模型,程序中可以根据类创建指定类型的对象,举例来说:可以通过Person类来创建人的对象,通过Dog类创建狗的对象,通过Car类来创建汽车的对象,不同的类可以用来创建不同的对象。
定义类:
class 类名 {属性名: 类型;constructor(参数: 类型){this.属性名 = 参数;}方法名(){....}}
示例:
class Person{name: string;age: number;constructor(name: string, age: number){this.name = name;this.age = age;}sayHello(){console.log(`大家好,我是${this.name}`);}
}
使用类:
const p = new Person('孙悟空', 18);
p.sayHello();
封装
对象实质上就是属性和方法的容器,它的主要作用就是存储属性和方法,这就是所谓的封装
默认情况下,对象的属性是可以任意的修改的,为了确保数据的安全性,在TS中可以对属性的权限进行设置
只读属性(readonly):
TS中属性具有三种修饰符:
示例:
public
class Person{public name: string; // 写或什么都不写都是publicpublic age: number;constructor(name: string, age: number){this.name = name; // 可以在类中修改this.age = age;}sayHello(){console.log(`大家好,我是${this.name}`);}
}class Employee extends Person{constructor(name: string, age: number){super(name, age);this.name = name; //子类中可以修改}
}const p = new Person('孙悟空', 18);
p.name = '猪八戒';// 可以通过对象修改
protected
class Person{protected name: string;protected age: number;constructor(name: string, age: number){this.name = name; // 可以修改this.age = age;}sayHello(){console.log(`大家好,我是${this.name}`);}
}class Employee extends Person{constructor(name: string, age: number){super(name, age);this.name = name; //子类中可以修改}
}const p = new Person('孙悟空', 18);
p.name = '猪八戒';// 不能修改
private
class Person{private name: string;private age: number;constructor(name: string, age: number){this.name = name; // 可以修改this.age = age;}sayHello(){console.log(`大家好,我是${this.name}`);}
}class Employee extends Person{constructor(name: string, age: number){super(name, age);this.name = name; //子类中不能修改}
}const p = new Person('孙悟空', 18);
p.name = '猪八戒';// 不能修改
属性存取器
对于一些不希望被任意修改的属性,可以将其设置为private
直接将其设置为private将导致无法再通过对象修改其中的属性
我们可以在类中定义一组读取、设置属性的方法,这种对属性读取或设置的属性被称为属性的存取器
读取属性的方法叫做setter方法,设置属性的方法叫做getter方法
示例:
class Person{private _name: string;constructor(name: string){this._name = name;}get name(){return this._name;}set name(name: string){this._name = name;}}const p1 = new Person('孙悟空');
console.log(p1.name); // 通过getter读取name属性
p1.name = '猪八戒'; // 通过setter修改name属性
静态属性
静态属性(方法),也称为类属性。使用静态属性无需创建实例,通过类即可直接使用
静态属性(方法)使用static开头
示例:
class Tools{static PI = 3.1415926;static sum(num1: number, num2: number){return num1 + num2}
}console.log(Tools.PI);
console.log(Tools.sum(123, 456));
this
继承
继承时面向对象中的又一个特性
通过继承可以将其他类中的属性和方法引入到当前类中
示例:
class Animal{name: string;age: number;constructor(name: string, age: number){this.name = name;this.age = age;}
}class Dog extends Animal{bark(){console.log(`${this.name}在汪汪叫!`);}
}const dog = new Dog('旺财', 4);
dog.bark();
通过继承可以在不修改类的情况下完成对类的扩展
重写
发生继承时,如果子类中的方法会替换掉父类中的同名方法,这就称为方法的重写
示例:
class Animal{name: string;age: number;constructor(name: string, age: number){this.name = name;this.age = age;}run(){console.log(`父类中的run方法!`);}
}class Dog extends Animal{bark(){console.log(`${this.name}在汪汪叫!`);}run(){console.log(`子类中的run方法,会重写父类中的run方法!`);}
}const dog = new Dog('旺财', 4);
dog.bark();
在子类中可以使用super来完成对父类的引用
抽象类(abstract class)
抽象类是专门用来被其他类所继承的类,它只能被其他类所继承不能用来创建实例
abstract class Animal{abstract run(): void;bark(){console.log('动物在叫~');}
}class Dog extends Animals{run(){console.log('狗在跑~');}
}
使用abstract开头的方法叫做抽象方法,抽象方法没有方法体只能定义在抽象类中,继承抽象类时抽象方法必须要实现
接口的作用类似于抽象类,不同点在于接口中的所有方法和属性都是没有实值的,换句话说接口中的所有方法都是抽象方法。接口主要负责定义一个类的结构,接口可以去限制一个对象的接口,对象只有包含接口中定义的所有属性和方法时才能匹配接口。同时,可以让一个类去实现接口,实现接口时类中要保护接口中的所有属性。
示例(检查对象类型):
interface Person{name: string;sayHello():void;
}function fn(per: Person){per.sayHello();
}fn({name:'孙悟空', sayHello() {console.log(`Hello, 我是 ${this.name}`)}});
示例(实现)
interface Person{name: string;sayHello():void;
}class Student implements Person{constructor(public name: string) {}sayHello() {console.log('大家好,我是'+this.name);}
}
定义一个函数或类时,有些情况下无法确定其中要使用的具体类型(返回值、参数、属性的类型不能确定),此时泛型便能够发挥作用。
举个例子:
function test(arg: any): any{return arg;
}
上例中,test函数有一个参数类型不确定,但是能确定的时其返回值的类型和参数的类型是相同的,由于类型不确定所以参数和返回值均使用了any,但是很明显这样做是不合适的,首先使用any会关闭TS的类型检查,其次这样设置也不能体现出参数和返回值是相同的类型
使用泛型:
function test(arg: T): T{return arg;
}
这里的
就是泛型,T是我们给这个类型起的名字(不一定非叫T),设置泛型后即可在函数中使用T来表示该类型。所以泛型其实很好理解,就表示某个类型。
那么如何使用上边的函数呢?
方式一(直接使用):
test(10)
使用时可以直接传递参数使用,类型会由TS自动推断出来,但有时编译器无法自动推断时还需要使用下面的方式
方式二(指定类型):
test(10)
也可以在函数后手动指定泛型
可以同时指定多个泛型,泛型间使用逗号隔开:
function test(a: T, b: K): K{return b;
}test(10, "hello");
使用泛型时,完全可以将泛型当成是一个普通的类去使用
类中同样可以使用泛型:
class MyClass{prop: T;constructor(prop: T){this.prop = prop;}
}
除此之外,也可以对泛型的范围进行约束
interface MyInter{length: number;
}function test(arg: T): number{return arg.length;
}
使用T extends MyInter表示泛型T必须是MyInter的子类,不一定非要使用接口类和抽象类同样适用。
JavaScript 和 TypeScript 的主要差异
TypeScript 从核心语言方面和类概念的模塑方面对 JavaScript 对象模型进行扩展。
JavaScript 代码可以在无需任何修改的情况下与 TypeScript 一同工作,同时可以使用编译器将 TypeScript 代码转换为 JavaScript。
TypeScript 通过类型注解提供编译时的静态类型检查。
TypeScript 中的数据要求带有明确的类型,JavaScript不要求。
TypeScript 为函数提供了缺省参数值。
TypeScript 引入了 JavaScript 中没有的“类”概念。
TypeScript 中引入了模块的概念,可以把声明、数据、函数和类封装在模块中。
TypeScript 的基本数据类型 有boolean、number 、string 、 array 、 enum 、any 、void。
var isDone: boolean = false;
var isNumber:number=6;
var isfloat:number=6.01;
var name: string = "bob";
var family_name: string = 'Green';
var list: number[] = [1, 2, 3];
var name: string[] = ["阿龙","阿猫","阿狗"];// 访问方式
var list: number[] = [1, 2, 3];
alert(list[0]));// 定义任意类型的数组,关键字为Array.
var arr:Array = [1,2,3,"a","b","c"]; // 任意类型数组
alert(arr[1]);
enum
enum Color {Red, //枚举元素列表Green,Blue
};
var c: Color = Color.Green;
假如我们有一个数值,但是我们不知道枚举类型中是否有定义,可以用以下方式来获取,代码如下:
enum Color {Red = 1,Green,Blue
};
var colorName: string = Color[2]; //访问第二个枚举子元素Green
alert(colorName);
colorName = Color[4];
alert(colorName);
那么将会输出Green和undefined。因为Green的值是 2,而没有一个枚举定义的值是 4,所以返回undefined。
任意类型 any
var notSure: any = 4;
notSure = "maybe a string instead";
notSure = false; // 定义为boolen型
定义为any后,将失去语法感知的功能,就相当于写JavaScript 一样。值得一提的是,any可以配合数组来使用,代码如下:
var list: any[] = [1, true, "free"];
list[1] = 100; //更改list[1]的值
在TypeScript中定义函数的语法为:
function function_name(arg:number,arg1:number,....):return_type{code 函数要执行的代码;return data;
}
其中 function 为声明函数的关键字,function_name 为自定义函数的名字,arg为参数列表,_returntype为该函数的返回值类型,code为函数被调用时要执行的代码,使用return关键字返回数据,data为要返回的数据,要使用“{}”括起来。函数的调用就很简单了,如下代码:
function add(x: number, y: number): number { //定义返回值为number类型的函数return x+y;
}
add(5,6); //调用函数
匿名函数:
匿名函数是没有名称只有主体的函数,不需要指定返回类型,它的返回值类型是从函数主体内的 return 语句推断的。如下代码:
var myAdd = function(x:number, y:number) { //定义匿名函数return x+y;};
myAdd(3,4); //调用匿名函数
可选参数:在参数名后面,冒号前面添加一个问号,则表明该参数是可选的。如下代码:
function buildName(firstName: string, lastName?: string) { //lastName为可选参数if (lastName)return firstName + " " + lastName;elsereturn firstName;
}
var result1 = buildName("Bob"); //正确调用 Bob
var result2 = buildName("Bob", "Adams"); //正确调用 Bob Adams
默认参数:在参数名后直接给定一个值,如果这个值没有被传入,那么将会被赋值为默认值。如下代码:
function buildName(firstName: string, lastName = "Smith") {return firstName + " " + lastName;
}var result1 = buildName("Bob"); //没有传入第二个参数,则被赋值为默认的smith,结果为:Bob Smith
var result2 = buildName("Bob", "Adams"); //结果为:Bob Adams
注:可选参数和默认参数必须在参数列表的最后。
类的结构及声明
JavaScript语言基于函数和原型链继承机制的方式构建可重用的组件。这对于面向对象编程来说显得比较笨拙。在下一代的JavaScript标准将为我们提供基于class base的面向对象的设计方式。但在TypeScript中可以使用这种方式,它将编译为目前大多数浏览器能允许的普通JavaScript代码,所以我们不用在等下一代Javascript标准的到来了。
类是面向对象编程的核心基础,是属性和方法的集合,类不能真接编写程序时引用,必须实例化后才能使用。
创建一个TypeScript类时,必须使用关键字class进行声明,该关键字后紧跟类的名称,之后用大括号将类体进行封装,类的基本声明格式如下。
class 类名{//类体
}
创建完成类的基本结构后就可以编写类体。类体中主要包括属性和方法的声明及定义,当然也可能在类体中只定义属性或只定义方法,甚至类体内可以不定义任何属性。完整的类的定义格式如下。
class 类名{name:string; //定义类的属性fun(){ //定义类的方法//定义该方法所要实现的功能}
}
构造函数
class student{ //定义student类name:string; //定义类的属性constructor(myname:string){ //定义构造函数this.name=myname;}study(){ //定义类的方法//定义该方法所要实现的功能}
}
一般情况下,创建一个类后并不能直接的对属性和方法进行引用,必须对类进行实例化,即创建一个对象。TypeScript中用new 关键字创建对象。实例化后通过“.”来访问属性和方法。实例代码如下:
class student{ //定义student类name:string; //定义类的属性constructor(myname:string){ //定义带参数的构造函数this.name=myname;}study(){ //定义类的方法document.write(" My name is "+this.name+".
");}write():string{return "write name:"+this.name;}
}
var s1=new student("Jim");
document.write(""+s1.name+"
"); //获取name属性
s1.study(); // 调用study方法
document.write(""+s1.write()+"
");
TypeScritp中模块的出现给我们解决了这一问题。使用 module 关键字来定义模块,并在末尾加花括号即可用; 用export 关键字使接口、类等成员对模块外可见。
module Validation { //定义模块export interface StringValidator { //声明接口对外部可以使用isAcceptable(s: string): boolean;}var lettersRegexp = /^[A-Za-z]+$/;var numberRegexp = /^[0-9]+$/;export class LettersOnlyValidator implements StringValidator { //声明类对外部可用isAcceptable(s: string) {return lettersRegexp.test(s);}}export class ZipCodeValidator implements StringValidator {isAcceptable(s: string) {return s.length === 5 && numberRegexp.test(s);}}
}
在模块声明完成以后,我们就可以调用这个模块了,调用模块中的接口、类、方法等。调用方法简单,就是用模块名后面跟一个点来调用类、接口、方法等。如下代码:
module Validation { //定义模块export interface StringValidator { //声明接口对外部可以使用isAcceptable(s: string): boolean;}var lettersRegexp = /^[A-Za-z]+$/;var numberRegexp = /^[0-9]+$/;export class LettersOnlyValidator implements StringValidator { //声明类对外部可用isAcceptable(s: string) {return lettersRegexp.test(s);}}export class ZipCodeValidator implements StringValidator {isAcceptable(s: string) {return s.length === 5 && numberRegexp.test(s);}}
}var strings = ['Hello', '98052', '101'];
var validators: { [s: string]: Validation.StringValidator; } = {};
validators['ZIP code'] = new Validation.ZipCodeValidator(); //使用模块中的类
validators['Letters only'] = new Validation.LettersOnlyValidator();
// 显示匹配结果
for(var i=0;i&strings.length;i++){for (var name in validators) {document.write('"' + strings[i] + '" ' + (validators[name].isAcceptable(strings[i]) ? ' matches ' : ' does not match ') + name+"
"); // 使用方法}
}
Validation.ts
module Validation {export interface StringValidator {isAcceptable(s: string): boolean;}
}
LettersOnlyValidator.ts///
module Validation {var lettersRegexp = /^[A-Za-z]+$/;export class LettersOnlyValidator implements StringValidator {isAcceptable(s: string) {return lettersRegexp.test(s);}}
}
ZipCodeValidator.ts
///
module Validation {var numberRegexp = /^[0-9]+$/;export class ZipCodeValidator implements StringValidator {isAcceptable(s: string) {return s.length === 5 && numberRegexp.test(s);}}
}
Test.ts
///
///
/// var strings = ['Hello', '98052', '101'];
var validators: { [s: string]: Validation.StringValidator; } = {};
validators['ZIP code'] = new Validation.ZipCodeValidator();
validators['Letters only'] = new Validation.LettersOnlyValidator();
for(var i=0;i<strings.length;i++){for (var name in validators) {document.write('"' + strings[i] + '" ' + (validators[name].isAcceptable(strings[i]) ? ' matches ' : ' does not match ') + name+"
"); //调用类的方法}
}