R语言解释生存分析中危险率和风险率的变化
创始人
2024-03-08 08:59:00
0

危险函数

 让我们模拟R中的一些数据:

n < -  10000
h < -  0.5
t < -  -log(runif(n))/ h

该代码模拟了危险函数的存活时间,即常数。 

 

 视频:R语言生存分析原理与晚期肺癌患者分析案例

R语言生存分析Survival analysis原理与晚期肺癌患者分析案例

事件< -  1 *(t <5)
时间< -  t
obstime [obstime> = 5] < -  5

现在让我们使用R中的生存包绘制估计的生存函数:

survfit < -  survfit(Surv(obstime,event)~1)

  

Kaplan-Meier

95%置信区间限制非常接近此处的估计线,因为我们已经模拟了具有大样本量的数据集。

累积危险率函数


为了确定危险函数是否在变化,我们可以绘制累积危险函数,

plot(survfit,fun =“cumhaz”)

危险变化


有时危险函数不会是恒定的,这将导致累积危险函数的梯度/斜率随时间变化。 

我们现在将再次模拟生存时间 :

highrisk < -  1 *(runif(n)<0.5)
h < -  0.5 + highrisk * 1.5
t < -  -log(runif(n))/ hobstime [obstime> = 5] < -  5

我们再次绘制累积危险函数:

  

累积危险图,其中样本由50%低风险和50%高风险对象组成


该图的自然解释是受试者经历的危险随着时间的推移而减少,因为累积危险函数的梯度/斜率随时间降低。 

改变风险比


在我们比较两组生存率的研究中可能出现同样的问题,例如在比较两种治疗方案的随机试验中。这种比较通常通过估算两组之间的风险比来概括,假设两组的危害比率随着时间的推移是恒定的,使用Cox的比例风险模型。 

highrisk < -  1 *(runif(n)<0.5)
治疗< -  1 *(runif(n)<0.5)t < -  -log(runif(n))/ h
事件< -  1 *(t <5)
时间< -  t
obstime [obstime> = 5] < -  5

现在让我们分别按治疗组绘制累积危险函数:

 

相关内容

热门资讯

AWSECS:访问外部网络时出... 如果您在AWS ECS中部署了应用程序,并且该应用程序需要访问外部网络,但是无法正常访问,可能是因为...
AWSElasticBeans... 在Dockerfile中手动配置nginx反向代理。例如,在Dockerfile中添加以下代码:FR...
银河麒麟V10SP1高级服务器... 银河麒麟高级服务器操作系统简介: 银河麒麟高级服务器操作系统V10是针对企业级关键业务...
北信源内网安全管理卸载 北信源内网安全管理是一款网络安全管理软件,主要用于保护内网安全。在日常使用过程中,卸载该软件是一种常...
AWR报告解读 WORKLOAD REPOSITORY PDB report (PDB snapshots) AW...
AWS管理控制台菜单和权限 要在AWS管理控制台中创建菜单和权限,您可以使用AWS Identity and Access Ma...
​ToDesk 远程工具安装及... 目录 前言 ToDesk 优势 ToDesk 下载安装 ToDesk 功能展示 文件传输 设备链接 ...
群晖外网访问终极解决方法:IP... 写在前面的话 受够了群晖的quickconnet的小水管了,急需一个新的解决方法&#x...
不能访问光猫的的管理页面 光猫是现代家庭宽带网络的重要组成部分,它可以提供高速稳定的网络连接。但是,有时候我们会遇到不能访问光...
Azure构建流程(Power... 这可能是由于配置错误导致的问题。请检查构建流程任务中的“发布构建制品”步骤,确保正确配置了“Arti...