(1)页面埋点日志
(2)启动日志
1)数据
[{"name":"大郎","sex":"男","age":"25"},{"name":"西门庆","sex":"男","age":"47"}]
2)取出第一个json对象
hive (gmall)>
select get_json_object('[{"name":"大郎","sex":"男","age":"25"},{"name":"西门庆","sex":"男","age":"47"}]','$[0]');
结果是:{“name”:“大郎”,“sex”:“男”,“age”:“25”}
3)取出第一个json的age字段的值
hive (gmall)>
SELECT get_json_object('[{"name":"大郎","sex":"男","age":"25"},{"name":"西门庆","sex":"男","age":"47"}]',"$[0].age");
启动日志解析思路:启动日志表中每行数据对应一个启动记录,一个启动记录应该包含日志中的公共信息和启动信息。先将所有包含start字段的日志过滤出来,然后使用get_json_object函数解析每个字段。
DROP TABLE IF EXISTS dwd_start_log;
CREATE EXTERNAL TABLE dwd_start_log(`area_code` STRING COMMENT '地区编码',`brand` STRING COMMENT '手机品牌',`channel` STRING COMMENT '渠道',`is_new` STRING COMMENT '是否首次启动',`model` STRING COMMENT '手机型号',`mid_id` STRING COMMENT '设备id',`os` STRING COMMENT '操作系统',`user_id` STRING COMMENT '会员id',`version_code` STRING COMMENT 'app版本号',`entry` STRING COMMENT 'icon手机图标 notice 通知 install 安装后启动',`loading_time` BIGINT COMMENT '启动加载时间',`open_ad_id` STRING COMMENT '广告页ID ',`open_ad_ms` BIGINT COMMENT '广告总共播放时间',`open_ad_skip_ms` BIGINT COMMENT '用户跳过广告时点',`ts` BIGINT COMMENT '时间'
) COMMENT '启动日志表'
PARTITIONED BY (`dt` STRING) -- 按照时间创建分区
STORED AS PARQUET -- 采用parquet列式存储
LOCATION '/warehouse/gmall/dwd/dwd_start_log' -- 指定在HDFS上存储位置
TBLPROPERTIES('parquet.compression'='lzo') -- 采用LZO压缩
;
判断启动日志的依据,json串中有start字段
hive (gmall)>
insert overwrite table dwd_start_log partition(dt='2020-06-14')
selectget_json_object(line,'$.common.ar'),get_json_object(line,'$.common.ba'),get_json_object(line,'$.common.ch'),get_json_object(line,'$.common.is_new'),get_json_object(line,'$.common.md'),get_json_object(line,'$.common.mid'),get_json_object(line,'$.common.os'),get_json_object(line,'$.common.uid'),get_json_object(line,'$.common.vc'),get_json_object(line,'$.start.entry'),get_json_object(line,'$.start.loading_time'),get_json_object(line,'$.start.open_ad_id'),get_json_object(line,'$.start.open_ad_ms'),get_json_object(line,'$.start.open_ad_skip_ms'),get_json_object(line,'$.ts')
from ods_log
where dt='2020-06-14'
and get_json_object(line,'$.start') is not null;
hive (gmall)>
select * from dwd_start_log where dt=‘2020-06-14’ limit 2;
页面日志解析思路:页面日志表中每行数据对应一个页面访问记录,一个页面访问记录应该包含日志中的公共信息和页面信息。先将所有包含page字段的日志过滤出来,然后使用get_json_object函数解析每个字段。
DROP TABLE IF EXISTS dwd_page_log;
CREATE EXTERNAL TABLE dwd_page_log(`area_code` STRING COMMENT '地区编码',`brand` STRING COMMENT '手机品牌',`channel` STRING COMMENT '渠道',`is_new` STRING COMMENT '是否首次启动',`model` STRING COMMENT '手机型号',`mid_id` STRING COMMENT '设备id',`os` STRING COMMENT '操作系统',`user_id` STRING COMMENT '会员id',`version_code` STRING COMMENT 'app版本号',`during_time` BIGINT COMMENT '持续时间毫秒',`page_item` STRING COMMENT '目标id ',`page_item_type` STRING COMMENT '目标类型',`last_page_id` STRING COMMENT '上页类型',`page_id` STRING COMMENT '页面ID ',`source_type` STRING COMMENT '来源类型',`ts` bigint
) COMMENT '页面日志表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_page_log'
TBLPROPERTIES('parquet.compression'='lzo');
hive (gmall)>
insert overwrite table dwd_page_log partition(dt='2020-06-14')
selectget_json_object(line,'$.common.ar'),get_json_object(line,'$.common.ba'),get_json_object(line,'$.common.ch'),get_json_object(line,'$.common.is_new'),get_json_object(line,'$.common.md'),get_json_object(line,'$.common.mid'),get_json_object(line,'$.common.os'),get_json_object(line,'$.common.uid'),get_json_object(line,'$.common.vc'),get_json_object(line,'$.page.during_time'),get_json_object(line,'$.page.item'),get_json_object(line,'$.page.item_type'),get_json_object(line,'$.page.last_page_id'),get_json_object(line,'$.page.page_id'),get_json_object(line,'$.page.source_type'),get_json_object(line,'$.ts')
from ods_log
where dt='2020-06-14'
and get_json_object(line,'$.page') is not null;
hive (gmall)>
select * from dwd_page_log where dt='2020-06-14' limit 2;
动作日志解析思路:动作日志表中每行数据对应用户的一个动作记录,一个动作记录应当包含公共信息、页面信息以及动作信息。先将包含action字段的日志过滤出来,然后通过UDTF函数,将action数组“炸开”(类似于explode函数的效果),然后使用get_json_object函数解析每个字段。
DROP TABLE IF EXISTS dwd_action_log;
CREATE EXTERNAL TABLE dwd_action_log(`area_code` STRING COMMENT '地区编码',`brand` STRING COMMENT '手机品牌',`channel` STRING COMMENT '渠道',`is_new` STRING COMMENT '是否首次启动',`model` STRING COMMENT '手机型号',`mid_id` STRING COMMENT '设备id',`os` STRING COMMENT '操作系统',`user_id` STRING COMMENT '会员id',`version_code` STRING COMMENT 'app版本号',`during_time` BIGINT COMMENT '持续时间毫秒',`page_item` STRING COMMENT '目标id ',`page_item_type` STRING COMMENT '目标类型',`last_page_id` STRING COMMENT '上页类型',`page_id` STRING COMMENT '页面id ',`source_type` STRING COMMENT '来源类型',`action_id` STRING COMMENT '动作id',`item` STRING COMMENT '目标id ',`item_type` STRING COMMENT '目标类型',`ts` BIGINT COMMENT '时间'
) COMMENT '动作日志表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_action_log'
TBLPROPERTIES('parquet.compression'='lzo');
(1)创建一个maven工程:hivefunction
(2)创建包名:com.atguigu.hive.udtf
(3)引入如下依赖
org.apache.hive hive-exec 3.1.2
(4)编码
package com.atguigu.hive.udtf;import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.PrimitiveObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
import org.json.JSONArray;import java.util.ArrayList;
import java.util.List;public class ExplodeJSONArray extends GenericUDTF {@Overridepublic StructObjectInspector initialize(ObjectInspector[] argOIs) throws UDFArgumentException {// 1 参数合法性检查if (argOIs.length != 1) {throw new UDFArgumentException("explode_json_array 只需要一个参数");}// 2 第一个参数必须为string//判断参数是否为基础数据类型if (argOIs[0].getCategory() != ObjectInspector.Category.PRIMITIVE) {throw new UDFArgumentException("explode_json_array 只接受基础类型参数");}//将参数对象检查器强转为基础类型对象检查器PrimitiveObjectInspector argumentOI = (PrimitiveObjectInspector) argOIs[0];//判断参数是否为String类型if (argumentOI.getPrimitiveCategory() != PrimitiveObjectInspector.PrimitiveCategory.STRING) {throw new UDFArgumentException("explode_json_array 只接受string类型的参数");}// 3 定义返回值名称和类型List fieldNames = new ArrayList();List fieldOIs = new ArrayList();fieldNames.add("items");fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);return ObjectInspectorFactory.getStandardStructObjectInspector(fieldNames, fieldOIs);}public void process(Object[] objects) throws HiveException {// 1 获取传入的数据String jsonArray = objects[0].toString();// 2 将string转换为json数组JSONArray actions = new JSONArray(jsonArray);// 3 循环一次,取出数组中的一个json,并写出for (int i = 0; i < actions.length(); i++) {String[] result = new String[1];result[0] = actions.getString(i);forward(result);}}public void close() throws HiveException {}}
(1)打包
(2)将hivefunction-1.0-SNAPSHOT.jar上传到hadoop102的/opt/module,然后再将该jar包上传到HDFS的/user/hive/jars路径下
[atguigu@hadoop102 module]$ hadoop fs -mkdir -p /user/hive/jars
[atguigu@hadoop102 module]$ hadoop fs -put hivefunction-1.0-SNAPSHOT.jar /user/hive/jars
(3)创建永久函数与开发好的java class关联
create function explode_json_array as 'com.atguigu.hive.udtf.ExplodeJSONArray' using jar 'hdfs://hadoop102:8020/user/hive/jars/hivefunction-1.0-SNAPSHOT.jar';
(4)注意:如果修改了自定义函数重新生成jar包怎么处理?只需要替换HDFS路径上的旧jar包,然后重启Hive客户端即可。
5)数据导入
insert overwrite table dwd_action_log partition(dt='2020-06-14')
selectget_json_object(line,'$.common.ar'),get_json_object(line,'$.common.ba'),get_json_object(line,'$.common.ch'),get_json_object(line,'$.common.is_new'),get_json_object(line,'$.common.md'),get_json_object(line,'$.common.mid'),get_json_object(line,'$.common.os'),get_json_object(line,'$.common.uid'),get_json_object(line,'$.common.vc'),get_json_object(line,'$.page.during_time'),get_json_object(line,'$.page.item'),get_json_object(line,'$.page.item_type'),get_json_object(line,'$.page.last_page_id'),get_json_object(line,'$.page.page_id'),get_json_object(line,'$.page.source_type'),get_json_object(action,'$.action_id'),get_json_object(action,'$.item'),get_json_object(action,'$.item_type'),get_json_object(action,'$.ts')
from ods_log lateral view explode_json_array(get_json_object(line,'$.actions')) tmp as action
where dt='2020-06-14'
and get_json_object(line,'$.actions') is not null;
3)查看数据
select * from dwd_action_log where dt='2020-06-14' limit 2;
曝光日志解析思路:曝光日志表中每行数据对应一个曝光记录,一个曝光记录应当包含公共信息、页面信息以及曝光信息。先将包含display字段的日志过滤出来,然后通过UDTF函数,将display数组“炸开”(类似于explode函数的效果),然后使用get_json_object函数解析每个字段。
DROP TABLE IF EXISTS dwd_display_log;
CREATE EXTERNAL TABLE dwd_display_log(`area_code` STRING COMMENT '地区编码',`brand` STRING COMMENT '手机品牌',`channel` STRING COMMENT '渠道',`is_new` STRING COMMENT '是否首次启动',`model` STRING COMMENT '手机型号',`mid_id` STRING COMMENT '设备id',`os` STRING COMMENT '操作系统',`user_id` STRING COMMENT '会员id',`version_code` STRING COMMENT 'app版本号',`during_time` BIGINT COMMENT 'app版本号',`page_item` STRING COMMENT '目标id ',`page_item_type` STRING COMMENT '目标类型',`last_page_id` STRING COMMENT '上页类型',`page_id` STRING COMMENT '页面ID ',`source_type` STRING COMMENT '来源类型',`ts` BIGINT COMMENT 'app版本号',`display_type` STRING COMMENT '曝光类型',`item` STRING COMMENT '曝光对象id ',`item_type` STRING COMMENT 'app版本号',`order` BIGINT COMMENT '曝光顺序',`pos_id` BIGINT COMMENT '曝光位置'
) COMMENT '曝光日志表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_display_log'
TBLPROPERTIES('parquet.compression'='lzo');
insert overwrite table dwd_display_log partition(dt='2020-06-14')
selectget_json_object(line,'$.common.ar'),get_json_object(line,'$.common.ba'),get_json_object(line,'$.common.ch'),get_json_object(line,'$.common.is_new'),get_json_object(line,'$.common.md'),get_json_object(line,'$.common.mid'),get_json_object(line,'$.common.os'),get_json_object(line,'$.common.uid'),get_json_object(line,'$.common.vc'),get_json_object(line,'$.page.during_time'),get_json_object(line,'$.page.item'),get_json_object(line,'$.page.item_type'),get_json_object(line,'$.page.last_page_id'),get_json_object(line,'$.page.page_id'),get_json_object(line,'$.page.source_type'),get_json_object(line,'$.ts'),get_json_object(display,'$.display_type'),get_json_object(display,'$.item'),get_json_object(display,'$.item_type'),get_json_object(display,'$.order'),get_json_object(display,'$.pos_id')
from ods_log lateral view explode_json_array(get_json_object(line,'$.displays')) tmp as display
where dt='2020-06-14'
and get_json_object(line,'$.displays') is not null;
select * from dwd_display_log where dt='2020-06-14' limit 2;
错误日志解析思路:错误日志表中每行数据对应一个错误记录,为方便定位错误,一个错误记录应当包含与之对应的公共信息、页面信息、曝光信息、动作信息、启动信息以及错误信息。先将包含err字段的日志过滤出来,然后使用get_json_object函数解析所有字段。
DROP TABLE IF EXISTS dwd_error_log;
CREATE EXTERNAL TABLE dwd_error_log(`area_code` STRING COMMENT '地区编码',`brand` STRING COMMENT '手机品牌',`channel` STRING COMMENT '渠道',`is_new` STRING COMMENT '是否首次启动',`model` STRING COMMENT '手机型号',`mid_id` STRING COMMENT '设备id',`os` STRING COMMENT '操作系统',`user_id` STRING COMMENT '会员id',`version_code` STRING COMMENT 'app版本号',`page_item` STRING COMMENT '目标id ',`page_item_type` STRING COMMENT '目标类型',`last_page_id` STRING COMMENT '上页类型',`page_id` STRING COMMENT '页面ID ',`source_type` STRING COMMENT '来源类型',`entry` STRING COMMENT ' icon手机图标 notice 通知 install 安装后启动',`loading_time` STRING COMMENT '启动加载时间',`open_ad_id` STRING COMMENT '广告页ID ',`open_ad_ms` STRING COMMENT '广告总共播放时间',`open_ad_skip_ms` STRING COMMENT '用户跳过广告时点',`actions` STRING COMMENT '动作',`displays` STRING COMMENT '曝光',`ts` STRING COMMENT '时间',`error_code` STRING COMMENT '错误码',`msg` STRING COMMENT '错误信息'
) COMMENT '错误日志表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_error_log'
TBLPROPERTIES('parquet.compression'='lzo');
说明:此处为对动作数组和曝光数组做处理,如需分析错误与单个动作或曝光的关联,可先使用explode_json_array函数将数组“炸开”,再使用get_json_object函数获取具体字段。
insert overwrite table dwd_error_log partition(dt='2020-06-14')
selectget_json_object(line,'$.common.ar'),get_json_object(line,'$.common.ba'),get_json_object(line,'$.common.ch'),get_json_object(line,'$.common.is_new'),get_json_object(line,'$.common.md'),get_json_object(line,'$.common.mid'),get_json_object(line,'$.common.os'),get_json_object(line,'$.common.uid'),get_json_object(line,'$.common.vc'),get_json_object(line,'$.page.item'),get_json_object(line,'$.page.item_type'),get_json_object(line,'$.page.last_page_id'),get_json_object(line,'$.page.page_id'),get_json_object(line,'$.page.source_type'),get_json_object(line,'$.start.entry'),get_json_object(line,'$.start.loading_time'),get_json_object(line,'$.start.open_ad_id'),get_json_object(line,'$.start.open_ad_ms'),get_json_object(line,'$.start.open_ad_skip_ms'),get_json_object(line,'$.actions'),get_json_object(line,'$.displays'),get_json_object(line,'$.ts'),get_json_object(line,'$.err.error_code'),get_json_object(line,'$.err.msg')
from ods_log
where dt='2020-06-14'
and get_json_object(line,'$.err') is not null;
hive (gmall)>
select * from dwd_error_log where dt='2020-06-14' limit 2;
(1)在hadoop102的/home/atguigu/bin目录下创建脚本
[atguigu@hadoop102 bin]$ vim ods_to_dwd_log.sh
在脚本中编写如下内容
#!/bin/bashAPP=gmall
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$2" ] ;thendo_date=$2
else do_date=`date -d "-1 day" +%F`
fidwd_start_log="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_start_log partition(dt='$do_date')
selectget_json_object(line,'$.common.ar'),get_json_object(line,'$.common.ba'),get_json_object(line,'$.common.ch'),get_json_object(line,'$.common.is_new'),get_json_object(line,'$.common.md'),get_json_object(line,'$.common.mid'),get_json_object(line,'$.common.os'),get_json_object(line,'$.common.uid'),get_json_object(line,'$.common.vc'),get_json_object(line,'$.start.entry'),get_json_object(line,'$.start.loading_time'),get_json_object(line,'$.start.open_ad_id'),get_json_object(line,'$.start.open_ad_ms'),get_json_object(line,'$.start.open_ad_skip_ms'),get_json_object(line,'$.ts')
from ${APP}.ods_log
where dt='$do_date'
and get_json_object(line,'$.start') is not null;"dwd_page_log="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_page_log partition(dt='$do_date')
selectget_json_object(line,'$.common.ar'),get_json_object(line,'$.common.ba'),get_json_object(line,'$.common.ch'),get_json_object(line,'$.common.is_new'),get_json_object(line,'$.common.md'),get_json_object(line,'$.common.mid'),get_json_object(line,'$.common.os'),get_json_object(line,'$.common.uid'),get_json_object(line,'$.common.vc'),get_json_object(line,'$.page.during_time'),get_json_object(line,'$.page.item'),get_json_object(line,'$.page.item_type'),get_json_object(line,'$.page.last_page_id'),get_json_object(line,'$.page.page_id'),get_json_object(line,'$.page.source_type'),get_json_object(line,'$.ts')
from ${APP}.ods_log
where dt='$do_date'
and get_json_object(line,'$.page') is not null;"dwd_action_log="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_action_log partition(dt='$do_date')
selectget_json_object(line,'$.common.ar'),get_json_object(line,'$.common.ba'),get_json_object(line,'$.common.ch'),get_json_object(line,'$.common.is_new'),get_json_object(line,'$.common.md'),get_json_object(line,'$.common.mid'),get_json_object(line,'$.common.os'),get_json_object(line,'$.common.uid'),get_json_object(line,'$.common.vc'),get_json_object(line,'$.page.during_time'),get_json_object(line,'$.page.item'),get_json_object(line,'$.page.item_type'),get_json_object(line,'$.page.last_page_id'),get_json_object(line,'$.page.page_id'),get_json_object(line,'$.page.source_type'),get_json_object(action,'$.action_id'),get_json_object(action,'$.item'),get_json_object(action,'$.item_type'),get_json_object(action,'$.ts')
from ${APP}.ods_log lateral view ${APP}.explode_json_array(get_json_object(line,'$.actions')) tmp as action
where dt='$do_date'
and get_json_object(line,'$.actions') is not null;"dwd_display_log="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_display_log partition(dt='$do_date')
selectget_json_object(line,'$.common.ar'),get_json_object(line,'$.common.ba'),get_json_object(line,'$.common.ch'),get_json_object(line,'$.common.is_new'),get_json_object(line,'$.common.md'),get_json_object(line,'$.common.mid'),get_json_object(line,'$.common.os'),get_json_object(line,'$.common.uid'),get_json_object(line,'$.common.vc'),get_json_object(line,'$.page.during_time'),get_json_object(line,'$.page.item'),get_json_object(line,'$.page.item_type'),get_json_object(line,'$.page.last_page_id'),get_json_object(line,'$.page.page_id'),get_json_object(line,'$.page.source_type'),get_json_object(line,'$.ts'),get_json_object(display,'$.display_type'),get_json_object(display,'$.item'),get_json_object(display,'$.item_type'),get_json_object(display,'$.order'),get_json_object(display,'$.pos_id')
from ${APP}.ods_log lateral view ${APP}.explode_json_array(get_json_object(line,'$.displays')) tmp as display
where dt='$do_date'
and get_json_object(line,'$.displays') is not null;"dwd_error_log="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_error_log partition(dt='$do_date')
selectget_json_object(line,'$.common.ar'),get_json_object(line,'$.common.ba'),get_json_object(line,'$.common.ch'),get_json_object(line,'$.common.is_new'),get_json_object(line,'$.common.md'),get_json_object(line,'$.common.mid'),get_json_object(line,'$.common.os'),get_json_object(line,'$.common.uid'),get_json_object(line,'$.common.vc'),get_json_object(line,'$.page.item'),get_json_object(line,'$.page.item_type'),get_json_object(line,'$.page.last_page_id'),get_json_object(line,'$.page.page_id'),get_json_object(line,'$.page.source_type'),get_json_object(line,'$.start.entry'),get_json_object(line,'$.start.loading_time'),get_json_object(line,'$.start.open_ad_id'),get_json_object(line,'$.start.open_ad_ms'),get_json_object(line,'$.start.open_ad_skip_ms'),get_json_object(line,'$.actions'),get_json_object(line,'$.displays'),get_json_object(line,'$.ts'),get_json_object(line,'$.err.error_code'),get_json_object(line,'$.err.msg')
from ${APP}.ods_log
where dt='$do_date'
and get_json_object(line,'$.err') is not null;"case $1 indwd_start_log )hive -e "$dwd_start_log";;dwd_page_log )hive -e "$dwd_page_log";;dwd_action_log )hive -e "$dwd_action_log";;dwd_display_log )hive -e "$dwd_display_log";;dwd_error_log )hive -e "$dwd_error_log";;all )hive -e "$dwd_start_log$dwd_page_log$dwd_action_log$dwd_display_log$dwd_error_log";;
esac
(2)增加脚本执行权限
[atguigu@hadoop102 bin]$ chmod 777 ods_to_dwd_log.sh
(1)执行脚本
[atguigu@hadoop102 module]$ ods_to_dwd_log.sh all 2020-06-14
(2)查询导入结果
业务数据方面DWD层的搭建主要注意点在于维度建模。
DROP TABLE IF EXISTS dwd_comment_info;
CREATE EXTERNAL TABLE dwd_comment_info(`id` STRING COMMENT '编号',`user_id` STRING COMMENT '用户ID',`sku_id` STRING COMMENT '商品sku',`spu_id` STRING COMMENT '商品spu',`order_id` STRING COMMENT '订单ID',`appraise` STRING COMMENT '评价(好评、中评、差评、默认评价)',`create_time` STRING COMMENT '评价时间'
) COMMENT '评价事实表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_comment_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
(1)首日装载
insert overwrite table dwd_comment_info partition (dt)
selectid,user_id,sku_id,spu_id,order_id,appraise,create_time,date_format(create_time,'yyyy-MM-dd')
from ods_comment_info
where dt='2020-06-14';
(2)每日装载
insert overwrite table dwd_comment_info partition(dt='2020-06-15')
selectid,user_id,sku_id,spu_id,order_id,appraise,create_time
from ods_comment_info where dt='2020-06-15';
DROP TABLE IF EXISTS dwd_order_detail;
CREATE EXTERNAL TABLE dwd_order_detail (`id` STRING COMMENT '订单编号',`order_id` STRING COMMENT '订单号',`user_id` STRING COMMENT '用户id',`sku_id` STRING COMMENT 'sku商品id',`province_id` STRING COMMENT '省份ID',`activity_id` STRING COMMENT '活动ID',`activity_rule_id` STRING COMMENT '活动规则ID',`coupon_id` STRING COMMENT '优惠券ID',`create_time` STRING COMMENT '创建时间',`source_type` STRING COMMENT '来源类型',`source_id` STRING COMMENT '来源编号',`sku_num` BIGINT COMMENT '商品数量',`original_amount` DECIMAL(16,2) COMMENT '原始价格',`split_activity_amount` DECIMAL(16,2) COMMENT '活动优惠分摊',`split_coupon_amount` DECIMAL(16,2) COMMENT '优惠券优惠分摊',`split_final_amount` DECIMAL(16,2) COMMENT '最终价格分摊'
) COMMENT '订单明细事实表表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_order_detail/'
TBLPROPERTIES ("parquet.compression"="lzo");
(1)首日装载
insert overwrite table dwd_order_detail partition(dt)
selectod.id,od.order_id,oi.user_id,od.sku_id,oi.province_id,oda.activity_id,oda.activity_rule_id,odc.coupon_id,od.create_time,od.source_type,od.source_id,od.sku_num,od.order_price*od.sku_num,od.split_activity_amount,od.split_coupon_amount,od.split_final_amount,date_format(create_time,'yyyy-MM-dd')
from
(select*from ods_order_detailwhere dt='2020-06-14'
)od
left join
(selectid,user_id,province_idfrom ods_order_infowhere dt='2020-06-14'
)oi
on od.order_id=oi.id
left join
(selectorder_detail_id,activity_id,activity_rule_idfrom ods_order_detail_activitywhere dt='2020-06-14'
)oda
on od.id=oda.order_detail_id
left join
(selectorder_detail_id,coupon_idfrom ods_order_detail_couponwhere dt='2020-06-14'
)odc
on od.id=odc.order_detail_id;
(2)每日装载
insert overwrite table dwd_order_detail partition(dt='2020-06-15')
selectod.id,od.order_id,oi.user_id,od.sku_id,oi.province_id,oda.activity_id,oda.activity_rule_id,odc.coupon_id,od.create_time,od.source_type,od.source_id,od.sku_num,od.order_price*od.sku_num,od.split_activity_amount,od.split_coupon_amount,od.split_final_amount
from
(select*from ods_order_detailwhere dt='2020-06-15'
)od
left join
(selectid,user_id,province_idfrom ods_order_infowhere dt='2020-06-15'
)oi
on od.order_id=oi.id
left join
(selectorder_detail_id,activity_id,activity_rule_idfrom ods_order_detail_activitywhere dt='2020-06-15'
)oda
on od.id=oda.order_detail_id
left join
(selectorder_detail_id,coupon_idfrom ods_order_detail_couponwhere dt='2020-06-15'
)odc
on od.id=odc.order_detail_id;
DROP TABLE IF EXISTS dwd_order_refund_info;
CREATE EXTERNAL TABLE dwd_order_refund_info(`id` STRING COMMENT '编号',`user_id` STRING COMMENT '用户ID',`order_id` STRING COMMENT '订单ID',`sku_id` STRING COMMENT '商品ID',`province_id` STRING COMMENT '地区ID',`refund_type` STRING COMMENT '退单类型',`refund_num` BIGINT COMMENT '退单件数',`refund_amount` DECIMAL(16,2) COMMENT '退单金额',`refund_reason_type` STRING COMMENT '退单原因类型',`create_time` STRING COMMENT '退单时间'
) COMMENT '退单事实表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_order_refund_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
3)数据装载
(1)首日装载
insert overwrite table dwd_order_refund_info partition(dt)
select
ri.id,
ri.user_id,
ri.order_id,
ri.sku_id,
oi.province_id,
ri.refund_type,
ri.refund_num,
ri.refund_amount,
ri.refund_reason_type,
ri.create_time,
date_format(ri.create_time,‘yyyy-MM-dd’)
from
(
select * from ods_order_refund_info where dt=‘2020-06-14’
)ri
left join
(
select id,province_id from ods_order_info where dt=‘2020-06-14’
)oi
on ri.order_id=oi.id;
(2)每日装载
insert overwrite table dwd_order_refund_info partition(dt=‘2020-06-15’)
select
ri.id,
ri.user_id,
ri.order_id,
ri.sku_id,
oi.province_id,
ri.refund_type,
ri.refund_num,
ri.refund_amount,
ri.refund_reason_type,
ri.create_time
from
(
select * from ods_order_refund_info where dt=‘2020-06-15’
)ri
left join
(
select id,province_id from ods_order_info where dt=‘2020-06-15’
)oi
on ri.order_id=oi.id;
DROP TABLE IF EXISTS dwd_cart_info;
CREATE EXTERNAL TABLE dwd_cart_info(`id` STRING COMMENT '编号',`user_id` STRING COMMENT '用户ID',`sku_id` STRING COMMENT '商品ID',`source_type` STRING COMMENT '来源类型',`source_id` STRING COMMENT '来源编号',`cart_price` DECIMAL(16,2) COMMENT '加入购物车时的价格',`is_ordered` STRING COMMENT '是否已下单',`create_time` STRING COMMENT '创建时间',`operate_time` STRING COMMENT '修改时间',`order_time` STRING COMMENT '下单时间',`sku_num` BIGINT COMMENT '加购数量'
) COMMENT '加购事实表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_cart_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
(1)首日装载
insert overwrite table dwd_cart_info partition(dt='2020-06-14')
selectid,user_id,sku_id,source_type,source_id,cart_price,is_ordered,create_time,operate_time,order_time,sku_num
from ods_cart_info
where dt='2020-06-14';
(2)每日装载
insert overwrite table dwd_cart_info partition(dt='2020-06-15')
selectid,user_id,sku_id,source_type,source_id,cart_price,is_ordered,create_time,operate_time,order_time,sku_num
from ods_cart_info
where dt='2020-06-15';
DROP TABLE IF EXISTS dwd_favor_info;
CREATE EXTERNAL TABLE dwd_favor_info(`id` STRING COMMENT '编号',`user_id` STRING COMMENT '用户id',`sku_id` STRING COMMENT 'skuid',`spu_id` STRING COMMENT 'spuid',`is_cancel` STRING COMMENT '是否取消',`create_time` STRING COMMENT '收藏时间',`cancel_time` STRING COMMENT '取消时间'
) COMMENT '收藏事实表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_favor_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
(1)首日装载
insert overwrite table dwd_favor_info partition(dt='2020-06-14')
selectid,user_id,sku_id,spu_id,is_cancel,create_time,cancel_time
from ods_favor_info
where dt='2020-06-14';
(2)每日装载
insert overwrite table dwd_favor_info partition(dt='2020-06-15')
selectid,user_id,sku_id,spu_id,is_cancel,create_time,cancel_time
from ods_favor_info
where dt='2020-06-15';
DROP TABLE IF EXISTS dwd_coupon_use;
CREATE EXTERNAL TABLE dwd_coupon_use(`id` STRING COMMENT '编号',`coupon_id` STRING COMMENT '优惠券ID',`user_id` STRING COMMENT 'userid',`order_id` STRING COMMENT '订单id',`coupon_status` STRING COMMENT '优惠券状态',`get_time` STRING COMMENT '领取时间',`using_time` STRING COMMENT '使用时间(下单)',`used_time` STRING COMMENT '使用时间(支付)',`expire_time` STRING COMMENT '过期时间'
) COMMENT '优惠券领用事实表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_coupon_use/'
TBLPROPERTIES ("parquet.compression"="lzo");
(1)首日装载
insert overwrite table dwd_coupon_use partition(dt)
selectid,coupon_id,user_id,order_id,coupon_status,get_time,using_time,used_time,expire_time,coalesce(date_format(used_time,'yyyy-MM-dd'),date_format(expire_time,'yyyy-MM-dd'),'9999-99-99')
from ods_coupon_use
where dt='2020-06-14';
(2)每日装载
a.装载逻辑
b.装载语句
insert overwrite table dwd_coupon_use partition(dt)
selectnvl(new.id,old.id),nvl(new.coupon_id,old.coupon_id),nvl(new.user_id,old.user_id),nvl(new.order_id,old.order_id),nvl(new.coupon_status,old.coupon_status),nvl(new.get_time,old.get_time),nvl(new.using_time,old.using_time),nvl(new.used_time,old.used_time),nvl(new.expire_time,old.expire_time),coalesce(date_format(nvl(new.used_time,old.used_time),'yyyy-MM-dd'),date_format(nvl(new.expire_time,old.expire_time),'yyyy-MM-dd'),'9999-99-99')
from
(selectid,coupon_id,user_id,order_id,coupon_status,get_time,using_time,used_time,expire_timefrom dwd_coupon_usewhere dt='9999-99-99'
)old
full outer join
(selectid,coupon_id,user_id,order_id,coupon_status,get_time,using_time,used_time,expire_timefrom ods_coupon_usewhere dt='2020-06-15'
)new
on old.id=new.id;
DROP TABLE IF EXISTS dwd_payment_info;
CREATE EXTERNAL TABLE dwd_payment_info (`id` STRING COMMENT '编号',`order_id` STRING COMMENT '订单编号',`user_id` STRING COMMENT '用户编号',`province_id` STRING COMMENT '地区ID',`trade_no` STRING COMMENT '交易编号',`out_trade_no` STRING COMMENT '对外交易编号',`payment_type` STRING COMMENT '支付类型',`payment_amount` DECIMAL(16,2) COMMENT '支付金额',`payment_status` STRING COMMENT '支付状态',`create_time` STRING COMMENT '创建时间',--调用第三方支付接口的时间`callback_time` STRING COMMENT '完成时间'--支付完成时间,即支付成功回调时间
) COMMENT '支付事实表表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_payment_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
(1)首日装载
insert overwrite table dwd_payment_info partition(dt)
selectpi.id,pi.order_id,pi.user_id,oi.province_id,pi.trade_no,pi.out_trade_no,pi.payment_type,pi.payment_amount,pi.payment_status,pi.create_time,pi.callback_time,nvl(date_format(pi.callback_time,'yyyy-MM-dd'),'9999-99-99')
from
(select * from ods_payment_info where dt='2020-06-14'
)pi
left join
(select id,province_id from ods_order_info where dt='2020-06-14'
)oi
on pi.order_id=oi.id;
(2)每日装载
insert overwrite table dwd_payment_info partition(dt)
selectnvl(new.id,old.id),nvl(new.order_id,old.order_id),nvl(new.user_id,old.user_id),nvl(new.province_id,old.province_id),nvl(new.trade_no,old.trade_no),nvl(new.out_trade_no,old.out_trade_no),nvl(new.payment_type,old.payment_type),nvl(new.payment_amount,old.payment_amount),nvl(new.payment_status,old.payment_status),nvl(new.create_time,old.create_time),nvl(new.callback_time,old.callback_time),nvl(date_format(nvl(new.callback_time,old.callback_time),'yyyy-MM-dd'),'9999-99-99')
from
(select id,order_id,user_id,province_id,trade_no,out_trade_no,payment_type,payment_amount,payment_status,create_time,callback_timefrom dwd_payment_infowhere dt = '9999-99-99'
)old
full outer join
(selectpi.id,pi.out_trade_no,pi.order_id,pi.user_id,oi.province_id,pi.payment_type,pi.trade_no,pi.payment_amount,pi.payment_status,pi.create_time,pi.callback_timefrom(select * from ods_payment_info where dt='2020-06-15')pileft join(select id,province_id from ods_order_info where dt='2020-06-15')oion pi.order_id=oi.id
)new
on old.id=new.id;
DROP TABLE IF EXISTS dwd_refund_payment;
CREATE EXTERNAL TABLE dwd_refund_payment (`id` STRING COMMENT '编号',`user_id` STRING COMMENT '用户ID',`order_id` STRING COMMENT '订单编号',`sku_id` STRING COMMENT 'SKU编号',`province_id` STRING COMMENT '地区ID',`trade_no` STRING COMMENT '交易编号',`out_trade_no` STRING COMMENT '对外交易编号',`payment_type` STRING COMMENT '支付类型',`refund_amount` DECIMAL(16,2) COMMENT '退款金额',`refund_status` STRING COMMENT '退款状态',`create_time` STRING COMMENT '创建时间',--调用第三方支付接口的时间`callback_time` STRING COMMENT '回调时间'--支付接口回调时间,即支付成功时间
) COMMENT '退款事实表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_refund_payment/'
TBLPROPERTIES ("parquet.compression"="lzo");
(1)首日装载
insert overwrite table dwd_refund_payment partition(dt)
selectrp.id,user_id,order_id,sku_id,province_id,trade_no,out_trade_no,payment_type,refund_amount,refund_status,create_time,callback_time,nvl(date_format(callback_time,'yyyy-MM-dd'),'9999-99-99')
from
(selectid,out_trade_no,order_id,sku_id,payment_type,trade_no,refund_amount,refund_status,create_time,callback_timefrom ods_refund_paymentwhere dt='2020-06-14'
)rp
left join
(selectid,user_id,province_idfrom ods_order_infowhere dt='2020-06-14'
)oi
on rp.order_id=oi.id;
(2)每日装载
insert overwrite table dwd_refund_payment partition(dt)
selectnvl(new.id,old.id),nvl(new.user_id,old.user_id),nvl(new.order_id,old.order_id),nvl(new.sku_id,old.sku_id),nvl(new.province_id,old.province_id),nvl(new.trade_no,old.trade_no),nvl(new.out_trade_no,old.out_trade_no),nvl(new.payment_type,old.payment_type),nvl(new.refund_amount,old.refund_amount),nvl(new.refund_status,old.refund_status),nvl(new.create_time,old.create_time),nvl(new.callback_time,old.callback_time),nvl(date_format(nvl(new.callback_time,old.callback_time),'yyyy-MM-dd'),'9999-99-99')
from
(selectid,user_id,order_id,sku_id,province_id,trade_no,out_trade_no,payment_type,refund_amount,refund_status,create_time,callback_timefrom dwd_refund_paymentwhere dt='9999-99-99'
)old
full outer join
(selectrp.id,user_id,order_id,sku_id,province_id,trade_no,out_trade_no,payment_type,refund_amount,refund_status,create_time,callback_timefrom(selectid,out_trade_no,order_id,sku_id,payment_type,trade_no,refund_amount,refund_status,create_time,callback_timefrom ods_refund_paymentwhere dt='2020-06-15')rpleft join(selectid,user_id,province_idfrom ods_order_infowhere dt='2020-06-15')oion rp.order_id=oi.id
)new
on old.id=new.id;
3)查询加载结果
DROP TABLE IF EXISTS dwd_order_info;
CREATE EXTERNAL TABLE dwd_order_info(`id` STRING COMMENT '编号',`order_status` STRING COMMENT '订单状态',`user_id` STRING COMMENT '用户ID',`province_id` STRING COMMENT '地区ID',`payment_way` STRING COMMENT '支付方式',`delivery_address` STRING COMMENT '邮寄地址',`out_trade_no` STRING COMMENT '对外交易编号',`tracking_no` STRING COMMENT '物流单号',`create_time` STRING COMMENT '创建时间(未支付状态)',`payment_time` STRING COMMENT '支付时间(已支付状态)',`cancel_time` STRING COMMENT '取消时间(已取消状态)',`finish_time` STRING COMMENT '完成时间(已完成状态)',`refund_time` STRING COMMENT '退款时间(退款中状态)',`refund_finish_time` STRING COMMENT '退款完成时间(退款完成状态)',`expire_time` STRING COMMENT '过期时间',`feight_fee` DECIMAL(16,2) COMMENT '运费',`feight_fee_reduce` DECIMAL(16,2) COMMENT '运费减免',`activity_reduce_amount` DECIMAL(16,2) COMMENT '活动减免',`coupon_reduce_amount` DECIMAL(16,2) COMMENT '优惠券减免',`original_amount` DECIMAL(16,2) COMMENT '订单原始价格',`final_amount` DECIMAL(16,2) COMMENT '订单最终价格'
) COMMENT '订单事实表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_order_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
(1)首日装载
insert overwrite table dwd_order_info partition(dt)
selectoi.id,oi.order_status,oi.user_id,oi.province_id,oi.payment_way,oi.delivery_address,oi.out_trade_no,oi.tracking_no,oi.create_time,times.ts['1002'] payment_time,times.ts['1003'] cancel_time,times.ts['1004'] finish_time,times.ts['1005'] refund_time,times.ts['1006'] refund_finish_time,oi.expire_time,feight_fee,feight_fee_reduce,activity_reduce_amount,coupon_reduce_amount,original_amount,final_amount,casewhen times.ts['1003'] is not null then date_format(times.ts['1003'],'yyyy-MM-dd')when times.ts['1004'] is not null and date_add(date_format(times.ts['1004'],'yyyy-MM-dd'),7)<='2020-06-14' and times.ts['1005'] is null then date_add(date_format(times.ts['1004'],'yyyy-MM-dd'),7)when times.ts['1006'] is not null then date_format(times.ts['1006'],'yyyy-MM-dd')when oi.expire_time is not null then date_format(oi.expire_time,'yyyy-MM-dd')else '9999-99-99'end
from
(select*from ods_order_infowhere dt='2020-06-14'
)oi
left join
(selectorder_id,str_to_map(concat_ws(',',collect_set(concat(order_status,'=',operate_time))),',','=') tsfrom ods_order_status_logwhere dt='2020-06-14'group by order_id
)times
on oi.id=times.order_id;
(2)每日装载
insert overwrite table dwd_order_info partition(dt)
selectnvl(new.id,old.id),nvl(new.order_status,old.order_status),nvl(new.user_id,old.user_id),nvl(new.province_id,old.province_id),nvl(new.payment_way,old.payment_way),nvl(new.delivery_address,old.delivery_address),nvl(new.out_trade_no,old.out_trade_no),nvl(new.tracking_no,old.tracking_no),nvl(new.create_time,old.create_time),nvl(new.payment_time,old.payment_time),nvl(new.cancel_time,old.cancel_time),nvl(new.finish_time,old.finish_time),nvl(new.refund_time,old.refund_time),nvl(new.refund_finish_time,old.refund_finish_time),nvl(new.expire_time,old.expire_time),nvl(new.feight_fee,old.feight_fee),nvl(new.feight_fee_reduce,old.feight_fee_reduce),nvl(new.activity_reduce_amount,old.activity_reduce_amount),nvl(new.coupon_reduce_amount,old.coupon_reduce_amount),nvl(new.original_amount,old.original_amount),nvl(new.final_amount,old.final_amount),casewhen new.cancel_time is not null then date_format(new.cancel_time,'yyyy-MM-dd')when new.finish_time is not null and date_add(date_format(new.finish_time,'yyyy-MM-dd'),7)='2020-06-15' and new.refund_time is null then '2020-06-15'when new.refund_finish_time is not null then date_format(new.refund_finish_time,'yyyy-MM-dd')when new.expire_time is not null then date_format(new.expire_time,'yyyy-MM-dd')else '9999-99-99'end
from
(selectid,order_status,user_id,province_id,payment_way,delivery_address,out_trade_no,tracking_no,create_time,payment_time,cancel_time,finish_time,refund_time,refund_finish_time,expire_time,feight_fee,feight_fee_reduce,activity_reduce_amount,coupon_reduce_amount,original_amount,final_amountfrom dwd_order_infowhere dt='9999-99-99'
)old
full outer join
(selectoi.id,oi.order_status,oi.user_id,oi.province_id,oi.payment_way,oi.delivery_address,oi.out_trade_no,oi.tracking_no,oi.create_time,times.ts['1002'] payment_time,times.ts['1003'] cancel_time,times.ts['1004'] finish_time,times.ts['1005'] refund_time,times.ts['1006'] refund_finish_time,oi.expire_time,feight_fee,feight_fee_reduce,activity_reduce_amount,coupon_reduce_amount,original_amount,final_amountfrom(select*from ods_order_infowhere dt='2020-06-15')oileft join(selectorder_id,str_to_map(concat_ws(',',collect_set(concat(order_status,'=',operate_time))),',','=') tsfrom ods_order_status_logwhere dt='2020-06-15'group by order_id)timeson oi.id=times.order_id
)new
on old.id=new.id;
(1)在/home/atguigu/bin目录下创建脚本ods_to_dwd_db_init.sh
[atguigu@hadoop102 bin]$ vim ods_to_dwd_db_init.sh
在脚本中填写如下内容
#!/bin/bash
APP=gmallif [ -n "$2" ] ;thendo_date=$2
else echo "请传入日期参数"exit
fi dwd_order_info="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_order_info partition(dt)
selectoi.id,oi.order_status,oi.user_id,oi.province_id,oi.payment_way,oi.delivery_address,oi.out_trade_no,oi.tracking_no,oi.create_time,times.ts['1002'] payment_time,times.ts['1003'] cancel_time,times.ts['1004'] finish_time,times.ts['1005'] refund_time,times.ts['1006'] refund_finish_time,oi.expire_time,feight_fee,feight_fee_reduce,activity_reduce_amount,coupon_reduce_amount,original_amount,final_amount,casewhen times.ts['1003'] is not null then date_format(times.ts['1003'],'yyyy-MM-dd')when times.ts['1004'] is not null and date_add(date_format(times.ts['1004'],'yyyy-MM-dd'),7)<='$do_date' and times.ts['1005'] is null then date_add(date_format(times.ts['1004'],'yyyy-MM-dd'),7)when times.ts['1006'] is not null then date_format(times.ts['1006'],'yyyy-MM-dd')when oi.expire_time is not null then date_format(oi.expire_time,'yyyy-MM-dd')else '9999-99-99'end
from
(select*from ${APP}.ods_order_infowhere dt='$do_date'
)oi
left join
(selectorder_id,str_to_map(concat_ws(',',collect_set(concat(order_status,'=',operate_time))),',','=') tsfrom ${APP}.ods_order_status_logwhere dt='$do_date'group by order_id
)times
on oi.id=times.order_id;"dwd_order_detail="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_order_detail partition(dt)
selectod.id,od.order_id,oi.user_id,od.sku_id,oi.province_id,oda.activity_id,oda.activity_rule_id,odc.coupon_id,od.create_time,od.source_type,od.source_id,od.sku_num,od.order_price*od.sku_num,od.split_activity_amount,od.split_coupon_amount,od.split_final_amount,date_format(create_time,'yyyy-MM-dd')
from
(select*from ${APP}.ods_order_detailwhere dt='$do_date'
)od
left join
(selectid,user_id,province_idfrom ${APP}.ods_order_infowhere dt='$do_date'
)oi
on od.order_id=oi.id
left join
(selectorder_detail_id,activity_id,activity_rule_idfrom ${APP}.ods_order_detail_activitywhere dt='$do_date'
)oda
on od.id=oda.order_detail_id
left join
(selectorder_detail_id,coupon_idfrom ${APP}.ods_order_detail_couponwhere dt='$do_date'
)odc
on od.id=odc.order_detail_id;"dwd_payment_info="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_payment_info partition(dt)
selectpi.id,pi.order_id,pi.user_id,oi.province_id,pi.trade_no,pi.out_trade_no,pi.payment_type,pi.payment_amount,pi.payment_status,pi.create_time,pi.callback_time,nvl(date_format(pi.callback_time,'yyyy-MM-dd'),'9999-99-99')
from
(select * from ${APP}.ods_payment_info where dt='$do_date'
)pi
left join
(select id,province_id from ${APP}.ods_order_info where dt='$do_date'
)oi
on pi.order_id=oi.id;"dwd_cart_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_cart_info partition(dt='$do_date')
selectid,user_id,sku_id,source_type,source_id,cart_price,is_ordered,create_time,operate_time,order_time,sku_num
from ${APP}.ods_cart_info
where dt='$do_date';"dwd_comment_info="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_comment_info partition(dt)
selectid,user_id,sku_id,spu_id,order_id,appraise,create_time,date_format(create_time,'yyyy-MM-dd')
from ${APP}.ods_comment_info
where dt='$do_date';
"dwd_favor_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_favor_info partition(dt='$do_date')
selectid,user_id,sku_id,spu_id,is_cancel,create_time,cancel_time
from ${APP}.ods_favor_info
where dt='$do_date';"dwd_coupon_use="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_coupon_use partition(dt)
selectid,coupon_id,user_id,order_id,coupon_status,get_time,using_time,used_time,expire_time,coalesce(date_format(used_time,'yyyy-MM-dd'),date_format(expire_time,'yyyy-MM-dd'),'9999-99-99')
from ${APP}.ods_coupon_use
where dt='$do_date';"dwd_order_refund_info="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_order_refund_info partition(dt)
selectri.id,ri.user_id,ri.order_id,ri.sku_id,oi.province_id,ri.refund_type,ri.refund_num,ri.refund_amount,ri.refund_reason_type,ri.create_time,date_format(ri.create_time,'yyyy-MM-dd')
from
(select * from ${APP}.ods_order_refund_info where dt='$do_date'
)ri
left join
(select id,province_id from ${APP}.ods_order_info where dt='$do_date'
)oi
on ri.order_id=oi.id;"dwd_refund_payment="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_refund_payment partition(dt)
selectrp.id,user_id,order_id,sku_id,province_id,trade_no,out_trade_no,payment_type,refund_amount,refund_status,create_time,callback_time,nvl(date_format(callback_time,'yyyy-MM-dd'),'9999-99-99')
from
(selectid,out_trade_no,order_id,sku_id,payment_type,trade_no,refund_amount,refund_status,create_time,callback_timefrom ${APP}.ods_refund_paymentwhere dt='$do_date'
)rp
left join
(selectid,user_id,province_idfrom ${APP}.ods_order_infowhere dt='$do_date'
)oi
on rp.order_id=oi.id;"case $1 indwd_order_info )hive -e "$dwd_order_info";;dwd_order_detail )hive -e "$dwd_order_detail";;dwd_payment_info )hive -e "$dwd_payment_info";;dwd_cart_info )hive -e "$dwd_cart_info";;dwd_comment_info )hive -e "$dwd_comment_info";;dwd_favor_info )hive -e "$dwd_favor_info";;dwd_coupon_use )hive -e "$dwd_coupon_use";;dwd_order_refund_info )hive -e "$dwd_order_refund_info";;dwd_refund_payment )hive -e "$dwd_refund_payment";;all )hive -e "$dwd_order_info$dwd_order_detail$dwd_payment_info$dwd_cart_info$dwd_comment_info$dwd_favor_info$dwd_coupon_use$dwd_order_refund_info$dwd_refund_payment";;
esac
(2)增加执行权限
[atguigu@hadoop102 bin]$ chmod +x ods_to_dwd_db_init.sh
(1)执行脚本
[atguigu@hadoop102 bin]$ ods_to_dwd_db_init.sh all 2020-06-14
(2)查看数据是否导入成功
(1)在/home/atguigu/bin目录下创建脚本ods_to_dwd_db.sh
[atguigu@hadoop102 bin]$ vim ods_to_dwd_db.sh
在脚本中填写如下内容
#!/bin/bashAPP=gmall
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$2" ] ;thendo_date=$2
else do_date=`date -d "-1 day" +%F`
fi# 假设某累积型快照事实表,某天所有的业务记录全部完成,则会导致9999-99-99分区的数据未被覆盖,从而导致数据重复,该函数根据9999-99-99分区的数据的末次修改时间判断其是否被覆盖了,如果未被覆盖,就手动清理
clear_data(){current_date=`date +%F`current_date_timestamp=`date -d "$current_date" +%s`last_modified_date=`hadoop fs -ls /warehouse/gmall/dwd/$1 | grep '9999-99-99' | awk '{print $6}'`last_modified_date_timestamp=`date -d "$last_modified_date" +%s`if [[ $last_modified_date_timestamp -lt $current_date_timestamp ]]; thenecho "clear table $1 partition(dt=9999-99-99)"hadoop fs -rm -r -f /warehouse/gmall/dwd/$1/dt=9999-99-99/*fi
}dwd_order_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table ${APP}.dwd_order_info partition(dt)
selectnvl(new.id,old.id),nvl(new.order_status,old.order_status),nvl(new.user_id,old.user_id),nvl(new.province_id,old.province_id),nvl(new.payment_way,old.payment_way),nvl(new.delivery_address,old.delivery_address),nvl(new.out_trade_no,old.out_trade_no),nvl(new.tracking_no,old.tracking_no),nvl(new.create_time,old.create_time),nvl(new.payment_time,old.payment_time),nvl(new.cancel_time,old.cancel_time),nvl(new.finish_time,old.finish_time),nvl(new.refund_time,old.refund_time),nvl(new.refund_finish_time,old.refund_finish_time),nvl(new.expire_time,old.expire_time),nvl(new.feight_fee,old.feight_fee),nvl(new.feight_fee_reduce,old.feight_fee_reduce),nvl(new.activity_reduce_amount,old.activity_reduce_amount),nvl(new.coupon_reduce_amount,old.coupon_reduce_amount),nvl(new.original_amount,old.original_amount),nvl(new.final_amount,old.final_amount),casewhen new.cancel_time is not null then date_format(new.cancel_time,'yyyy-MM-dd')when new.finish_time is not null and date_add(date_format(new.finish_time,'yyyy-MM-dd'),7)='$do_date' and new.refund_time is null then '$do_date'when new.refund_finish_time is not null then date_format(new.refund_finish_time,'yyyy-MM-dd')when new.expire_time is not null then date_format(new.expire_time,'yyyy-MM-dd')else '9999-99-99'end
from
(selectid,order_status,user_id,province_id,payment_way,delivery_address,out_trade_no,tracking_no,create_time,payment_time,cancel_time,finish_time,refund_time,refund_finish_time,expire_time,feight_fee,feight_fee_reduce,activity_reduce_amount,coupon_reduce_amount,original_amount,final_amountfrom ${APP}.dwd_order_infowhere dt='9999-99-99'
)old
full outer join
(selectoi.id,oi.order_status,oi.user_id,oi.province_id,oi.payment_way,oi.delivery_address,oi.out_trade_no,oi.tracking_no,oi.create_time,times.ts['1002'] payment_time,times.ts['1003'] cancel_time,times.ts['1004'] finish_time,times.ts['1005'] refund_time,times.ts['1006'] refund_finish_time,oi.expire_time,feight_fee,feight_fee_reduce,activity_reduce_amount,coupon_reduce_amount,original_amount,final_amountfrom(select*from ${APP}.ods_order_infowhere dt='$do_date')oileft join(selectorder_id,str_to_map(concat_ws(',',collect_set(concat(order_status,'=',operate_time))),',','=') tsfrom ${APP}.ods_order_status_logwhere dt='$do_date'group by order_id)timeson oi.id=times.order_id
)new
on old.id=new.id;"dwd_order_detail="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_order_detail partition(dt='$do_date')
selectod.id,od.order_id,oi.user_id,od.sku_id,oi.province_id,oda.activity_id,oda.activity_rule_id,odc.coupon_id,od.create_time,od.source_type,od.source_id,od.sku_num,od.order_price*od.sku_num,od.split_activity_amount,od.split_coupon_amount,od.split_final_amount
from
(select*from ${APP}.ods_order_detailwhere dt='$do_date'
)od
left join
(selectid,user_id,province_idfrom ${APP}.ods_order_infowhere dt='$do_date'
)oi
on od.order_id=oi.id
left join
(selectorder_detail_id,activity_id,activity_rule_idfrom ${APP}.ods_order_detail_activitywhere dt='$do_date'
)oda
on od.id=oda.order_detail_id
left join
(selectorder_detail_id,coupon_idfrom ${APP}.ods_order_detail_couponwhere dt='$do_date'
)odc
on od.id=odc.order_detail_id;"dwd_payment_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table ${APP}.dwd_payment_info partition(dt)
selectnvl(new.id,old.id),nvl(new.order_id,old.order_id),nvl(new.user_id,old.user_id),nvl(new.province_id,old.province_id),nvl(new.trade_no,old.trade_no),nvl(new.out_trade_no,old.out_trade_no),nvl(new.payment_type,old.payment_type),nvl(new.payment_amount,old.payment_amount),nvl(new.payment_status,old.payment_status),nvl(new.create_time,old.create_time),nvl(new.callback_time,old.callback_time),nvl(date_format(nvl(new.callback_time,old.callback_time),'yyyy-MM-dd'),'9999-99-99')
from
(select id,order_id,user_id,province_id,trade_no,out_trade_no,payment_type,payment_amount,payment_status,create_time,callback_timefrom ${APP}.dwd_payment_infowhere dt = '9999-99-99'
)old
full outer join
(selectpi.id,pi.out_trade_no,pi.order_id,pi.user_id,oi.province_id,pi.payment_type,pi.trade_no,pi.payment_amount,pi.payment_status,pi.create_time,pi.callback_timefrom(select * from ${APP}.ods_payment_info where dt='$do_date')pileft join(select id,province_id from ${APP}.ods_order_info where dt='$do_date')oion pi.order_id=oi.id
)new
on old.id=new.id;"dwd_cart_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_cart_info partition(dt='$do_date')
selectid,user_id,sku_id,source_type,source_id,cart_price,is_ordered,create_time,operate_time,order_time,sku_num
from ${APP}.ods_cart_info
where dt='$do_date';"dwd_comment_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_comment_info partition(dt='$do_date')
selectid,user_id,sku_id,spu_id,order_id,appraise,create_time
from ${APP}.ods_comment_info where dt='$do_date';"dwd_favor_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_favor_info partition(dt='$do_date')
selectid,user_id,sku_id,spu_id,is_cancel,create_time,cancel_time
from ${APP}.ods_favor_info
where dt='$do_date';"dwd_coupon_use="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table ${APP}.dwd_coupon_use partition(dt)
selectnvl(new.id,old.id),nvl(new.coupon_id,old.coupon_id),nvl(new.user_id,old.user_id),nvl(new.order_id,old.order_id),nvl(new.coupon_status,old.coupon_status),nvl(new.get_time,old.get_time),nvl(new.using_time,old.using_time),nvl(new.used_time,old.used_time),nvl(new.expire_time,old.expire_time),coalesce(date_format(nvl(new.used_time,old.used_time),'yyyy-MM-dd'),date_format(nvl(new.expire_time,old.expire_time),'yyyy-MM-dd'),'9999-99-99')
from
(selectid,coupon_id,user_id,order_id,coupon_status,get_time,using_time,used_time,expire_timefrom ${APP}.dwd_coupon_usewhere dt='9999-99-99'
)old
full outer join
(selectid,coupon_id,user_id,order_id,coupon_status,get_time,using_time,used_time,expire_timefrom ${APP}.ods_coupon_usewhere dt='$do_date'
)new
on old.id=new.id;"dwd_order_refund_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_order_refund_info partition(dt='$do_date')
selectri.id,ri.user_id,ri.order_id,ri.sku_id,oi.province_id,ri.refund_type,ri.refund_num,ri.refund_amount,ri.refund_reason_type,ri.create_time
from
(select * from ${APP}.ods_order_refund_info where dt='$do_date'
)ri
left join
(select id,province_id from ${APP}.ods_order_info where dt='$do_date'
)oi
on ri.order_id=oi.id;"dwd_refund_payment="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table ${APP}.dwd_refund_payment partition(dt)
selectnvl(new.id,old.id),nvl(new.user_id,old.user_id),nvl(new.order_id,old.order_id),nvl(new.sku_id,old.sku_id),nvl(new.province_id,old.province_id),nvl(new.trade_no,old.trade_no),nvl(new.out_trade_no,old.out_trade_no),nvl(new.payment_type,old.payment_type),nvl(new.refund_amount,old.refund_amount),nvl(new.refund_status,old.refund_status),nvl(new.create_time,old.create_time),nvl(new.callback_time,old.callback_time),nvl(date_format(nvl(new.callback_time,old.callback_time),'yyyy-MM-dd'),'9999-99-99')
from
(selectid,user_id,order_id,sku_id,province_id,trade_no,out_trade_no,payment_type,refund_amount,refund_status,create_time,callback_timefrom ${APP}.dwd_refund_paymentwhere dt='9999-99-99'
)old
full outer join
(selectrp.id,user_id,order_id,sku_id,province_id,trade_no,out_trade_no,payment_type,refund_amount,refund_status,create_time,callback_timefrom(selectid,out_trade_no,order_id,sku_id,payment_type,trade_no,refund_amount,refund_status,create_time,callback_timefrom ${APP}.ods_refund_paymentwhere dt='$do_date')rpleft join(selectid,user_id,province_idfrom ${APP}.ods_order_infowhere dt='$do_date')oion rp.order_id=oi.id
)new
on old.id=new.id;"case $1 indwd_order_info )hive -e "$dwd_order_info"clear_data dwd_order_info;;dwd_order_detail )hive -e "$dwd_order_detail";;dwd_payment_info )hive -e "$dwd_payment_info"clear_data dwd_payment_info;;dwd_cart_info )hive -e "$dwd_cart_info";;dwd_comment_info )hive -e "$dwd_comment_info";;dwd_favor_info )hive -e "$dwd_favor_info";;dwd_coupon_use )hive -e "$dwd_coupon_use"clear_data dwd_coupon_use;;dwd_order_refund_info )hive -e "$dwd_order_refund_info";;dwd_refund_payment )hive -e "$dwd_refund_payment"clear_data dwd_refund_payment;;all )hive -e "$dwd_order_info$dwd_order_detail$dwd_payment_info$dwd_cart_info$dwd_comment_info$dwd_favor_info$dwd_coupon_use$dwd_order_refund_info$dwd_refund_payment"clear_data dwd_order_infoclear_data dwd_payment_infoclear_data dwd_coupon_useclear_data dwd_refund_payment;;
esac
(2)增加脚本执行权限
[atguigu@hadoop102 bin]$ chmod 777 ods_to_dwd_db.sh
(1)执行脚本
[atguigu@hadoop102 bin]$ ods_to_dwd_db.sh all 2020-06-14
(2)查看数据是否导入成功