贪心算法概述:贪心算法可以认为是动态规划算法的一个特例,该算法需要满足的条件(贪心选择性质)要多余动态规划,但效率要比动态规划高。所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择(贪心选择)得到,当然这个问题只对部分问题成立
贪心算法特点:
框架:
Greedy(A, n) // A[1:n]代表n个输入
{Sort(A);solution = {}; //初始化解向量为空集for i to n doxi := Select(A)if Feasible(soltion, xi) then solution := Union(solution, xi)A = A - xiend ifEnd forreturn (solution)
}
给你很多形如 [start, end]
的闭区间,请你设计一个算法,算出这些区间中最多有几个互不相交的区间,注意边界相同不算相交
[start, end]
表示开始和结束的时间,请问你今天最多能参加几个活动呢?显然你一个人不能同时参加两个活动,所以说这个问题就是求这些时间区间的最大不相交子集int intervalSchedule(int[][] intvs);
举个例子,intvs = [[1,3], [2,4], [3,6]]
,这些区间最多有 2 个区间互不相交,即 [[1,3]
, [3,6]]
,你的算法应该返回 2
基本思路
intvs
中选择一个区间xxx,这个区间xxx是在当前所有区间中结束最早的(也即end
最小)intvs
中删除intvs
为空为止,此时所有选出的区间xxx就是最大不想交子集贪心算法在解决问题时往往首先需要对数据进行预处理(常见的就是排序),所以这里为了方便步骤1和步骤2,我们可以先按照每个区间的end
进行排序,然后再去执行
在判断是否相交时,如果它的start
小于xxx的end
,那么就是相交的,防止则是不相交的
class Solution {public int eraseOverlapIntervals(int[][] intervals) {if(intervals.length == 0) return 0;//按照end进行升序排序Arrays.sort(intervals, new Comparator(){public int compare(int[]a, int[]b){return a[1] - b[1];}});//count返回最大不相交区间,除非区间为空,所以至少有一个不相交的区间int count = 1;int x_end = intervals[0][1];for(int[] interval : intervals){int start = interval[0];if(start >= x_end){//说明终于找到了一个区间不相交count++;//更新下一个xx_end = interval[1];}}//注意题目问的是需要移除几个return intervals.length - count;}
}
设有nnn个活动的集合 E={1,2,…,n}E = \{1,2,…,n\}E={1,2,…,n},其中每个活动都要求使用同一资源,如演讲会场等,而在同一时间内只有一个活动能使用这一资源。每个活动iii 都有一个要求使用该资源的起始时间sis_{i}si 和一个结束时间fif_{i}fi,且si
此问题本质就是无重叠区间问题,但相比上一题,我们需要把未重叠的子区间给打印出来
class Solution {public int eraseOverlapIntervals(int[][] intervals) {if(intervals.length == 0) return 0;// 用于保存最后的无重叠区间List> arr = new ArrayList<>();//按照end进行升序排序Arrays.sort(intervals, new Comparator(){public int compare(int[]a, int[]b){return a[1] - b[1];}});//count返回最大不相交区间,除非区间为空,所以至少有一个不相交的区间int count = 1;int x_end = intervals[0][1];List first_temp = new ArrayList<>();first_temp.add(intervals[0][0]);first_temp.add(intervals[0][1]);arr.add(first_temp);for(int[] interval : intervals){int start = interval[0];if(start >= x_end){//说明终于找到了一个区间不相交List temp = new ArrayList<>();temp.add(interval[0]);temp.add(interval[1]);arr.add(temp);count++;//更新下一个xx_end = interval[1];}}//注意题目问的是需要移除几个for(int i = 0; i < arr.size(); i++){System.out.println(arr.get(i));}return intervals.length - count;}
}