Chapter3 Pytorch与机器学习有关函数(一)
创始人
2024-03-13 08:08:49
0

3.1 Tensor中统计学有关的函数

3.1.1 平均值、总和 、累积

1.测试结果1

import torcha = torch.rand(2, 2)print(a)
print(torch.mean(a,))
print(torch.sum(a))
print(torch.prod(a))

2.测试结果2:2 \times 3数组对第1维操作

import torcha = torch.tensor([[1.0,2.0,3.0],[4.0,5.0,6.0]])print(a)
print(torch.mean(a,dim=1))
print(torch.sum(a,dim=1))
print(torch.prod(a,dim=1))

3.测试结果3:2 \times 3数组对第0维操作

import torcha = torch.tensor([[1.0,2.0,3.0],[4.0,5.0,6.0]])print(a)
print(torch.mean(a,dim=0))
print(torch.sum(a,dim=0))
print(torch.prod(a,dim=0))

3.1.2 返回最值排序的索引值

import torcha = torch.tensor([[1.0,2.0,3.0],[4.0,5.0,6.0]])print(torch.argmax(a,dim=0))
print(torch.argmin(a,dim=0))

3.1.3 标准差、方差、中间数、众数

import torcha = torch.tensor([[1.0,2.0,2.0],[4.0,5.0,6.0]])print(torch.std(a))
print(torch.var(a))
print(torch.median(a))
print(torch.mode(a))

3.1.4 计算input的直方图

import torcha = torch.rand(2,2)*10
print(a)
print(torch.histc(a,6,0,0))

        第二个参数是指将数据分成几个区间,第三个参数第四个参数默认是0表示以a中最小的值作为初始区间,最大的值作为结束区间。演示结果如下图:

3.1.5 返回频数(只支持一位tensor)

import torcha = torch.randint(0,10,[10])
print(a)
print(torch.bincount(a))

0出现了..次,1出现了..次.....可以用来统计某一样别样本数量

3.1.6  分布函数torch.distributions

3.1.7 tensor中的随机抽样函数

 用随机数种子能够保证每次抽样的结果是一样的:

import torchtorch.manual_seed(1)mean = torch.rand(1,2)
std = torch.rand(1,2)print(torch.normal(mean,std))

3.2 tensor中与线性代数有关函数

3.2.1 tensor中的范数运算

 \sum |a-b|,\sum \sqrt{(a-b)^{2}},\sum \sqrt{(a-b)^{3}}norm:平方和相加开根号

import torcha = torch.tensor([3.0,4.0])
b = torch.tensor([5.0,8.0])print(a,b)
print(torch.dist(a,b,p=1))
print(torch.dist(a,b,p=2))
print(torch.dist(a,b,p=3))print(torch.norm(a))

3.2.2 tensor与矩阵分解

3.2.2.1 矩阵分解介绍

3.2.2.2 EVD分解

         考研的时候考过,不细说。Q是特征向量矩阵,\Sigma是特征值矩阵。要求矩阵满秩。

         PCA与特征值分解(主成分分析):通过一个投影矩阵,将原始的n \times m维特征矩阵(n个特征m个样本,即每一个样本表示成n维向量)映射到k维(最终结果为k \times m)上去(通过投影矩阵k \times n来实现映射)来实现降维。

3.2.2.3 SVD分解

        由于EVD分解只针对满秩矩阵且必须是方阵,我们引出了SVD分解,对矩阵形状和秩没有要求。

         应用:LDA算法中,主要思想是在"新空间"让同类物体的间隔尽可能小,不同类别物体的间隔尽可能大。

         S_{B}描述为同类物体的协方差矩阵, S_{W}描述为不同类物体的协方差矩阵。优化目标是对代价函数求最大值。

 3.3 pytorch

3.3.1 Tensor的裁减运算

        对tensor中元素进行范围性的约束,一是将数据约束在比较小的范围中网络在参数学习中容易稳定,可以实现类似正则化的功能防止过拟合;二是防止梯度离散/梯度爆炸。

import torcha = torch.rand(2,2)*10
print(a)print(a.clamp(1,2))   #将数据处理到1-2之间

3.3.2  tensor的索引与数据筛选

 3.2.2.1 torch.where

        第一个参数是判断条件,如果满足判断条件选择第二个参数的数据,如果不满足选择第三个参数的数据。类似C++中的 a>b?a:b

import torcha = torch.rand(4,4)
b = torch.rand(4,4)print(a)
print(b)out = torch.where(a>0.5,a,b)
print(out)

 3.2.2.2 torch.index_select

        我们用代码进行分析:

Chapter3 Pytorch与机器学习有关函数(一)

         我们初始化了一个4\times 4的张量,我们取出了第0、3、2行的数据到张量out中。

 3.2.2.3 torch.gather

        我们用代码进行分析:

import torcha = torch.linspace(1,16,16).view(4,4)
print(a)out  = torch.gather(a,dim=0,index=torch.tensor([[0,1,1,1],[0,1,2,2],[0,1,3,3]]))
print(out)

          我们初始化了一个4\times 4的张量,分别在第0维上找第 0 1 1 1个数据,即1 6 7 8,然后再取0 1 2 2 个数据......

        如果维度更高那么gather怎么用呢?

  3.2.2.4 torch.masked_select

import torcha = torch.linspace(1,16,16).view(4,4)
print(a)mask = torch.gt(a,8)
print(mask)out  = torch.masked_select(a,mask)
print(out)

         很好理解,不多解释。

  3.2.2.5 torch.take

import torcha = torch.linspace(1,16,16).view(4,4)
print(a)out = torch.take(a,index = torch.tensor([0,15,13,10]))
print(out)

        很好理解,不多解释。

3.3.3 tensor的组合和拼接

3.3.3.1 torch.cat

import torcha = torch.zeros((2,4))
b = torch.ones((2,4))out = torch.cat((a,b),dim = 0)
print(out)

        我们看到我们在第0维上进行了拼接,原来是两个2\times 4,拼接完成变成了4\times 4的张量。

        我们再将维度修改成1,查看其运行结果。

3.3.3.2 torch.stack

import torcha = torch.linspace(1,6,6).view(2,3)
b = torch.linspace(7,12,6).view(2,3)out = torch.stack((a,b),dim = 0)
print(out)
print(out.shape)

         我们来解析一下这个size:

[[[ 1.,  2.,  3.],         [ 4.,  5.,  6.]],        [[ 7.,  8.,  9.],         [10., 11., 12.]]]

        第一维度就有两个数据:[[ 1.,  2.,  3.], [ 4.,  5.,  6.]],[[ 7.,  8.,  9.][10., 11., 12.]]

        第二维度也是两个数据[ 1.,  2.,  3.], [ 4.,  5.,  6.]

        第三维度是三个数据1,2,3

        因此这个shape是2\times 2 \times 3的形式。

        而a是[ [1,2,3] ,[4,5,6]]的2\times 3形式,将a和b看作是两个独立的元素在第0维度进行拼接。

        那么如果在第一维度拼接是个什么样的结果呢?

import torcha = torch.linspace(1,6,6).view(2,3)
b = torch.linspace(7,12,6).view(2,3)out = torch.stack((a,b),dim = 1)
print(out)print(out[:,0,:])
print(out[:,1,:])print(out.shape)

         那么如果在第二维度拼接是个什么样的结果呢?

import torcha = torch.linspace(1,6,6).view(2,3)
b = torch.linspace(7,12,6).view(2,3)out = torch.stack((a,b),dim = 2)
print(out)print(out[:,:,0])
print(out[:,:,1])print(out.shape)

3.3.4 tensor的切片

3.3.4.1 torch.chunk

import torcha = torch.rand((3,4))
print(a)out = torch.chunk(a,2,dim=1)
print(out)print(out[0],out[0].shape)
print(out[1],out[1].shape)

        对第一维度进行分割,即

        [[0.1813, 0.0810, 0.7142, 0.8603],
        [0.2262, 0.8307, 0.2050, 0.7882],
        [0.1058, 0.8872, 0.7148, 0.1272]]

        对大括号里面进行分割,我们一个括号选出两个组成新的张量,构成两个3\times 2的张量。

3.3.4.2 torch.split

1.和torch.chunk一样的调用方式

import torcha = torch.rand((3,4))
print(a)out = torch.split(a,2,dim=1)
print(out)print(out[0],out[0].shape)
print(out[1],out[1].shape)

2.不平均分割

import torcha = torch.rand((10,4))
print(a)out = torch.split(a,3,dim=0)
print(len(out))for t in out:print(t,t.shape)

3.第二种调用方式 :传入list列表,指定我们要切分的尺寸

import torcha = torch.rand((10,4))
print(a)out = torch.split(a,[1,3,6],dim=0)
print(len(out))for t in out:print(t,t.shape)

3.3.5 tensor的变形操作

3.3.5.1 tensor.reshape

import torcha = torch.rand((2,3))
print(a)out = torch.reshape(a,(3,2))
print(out)

        简单来说,就是进行了简单的排列组合。

3.3.5.2 torch.t

import torcha = torch.rand((2,3))
print(a)out = torch.t(a)
print(out)

         对张量进行矩阵运算。

3.3.5.3 torch.transpose

1.用transpose求转置

        将两个维度相互交换:

import torcha = torch.rand((2,3))
print(a)out = torch.transpose(a,0,1)
print(out)

        交换a张量的第0维和第一维,相当于求转置。

2.用transpose实现高维交换

import torcha = torch.rand((1,2,3))
print(a)out = torch.transpose(a,0,1)
print(out)
print(out.shape)

3.3.5.4 torch.squeeze

        去除维度为1的维度。       

import torcha = torch.rand((1,2,3))
print(a)out = torch.squeeze(a)
print(out)
print(out.shape)

3.3.5.5 torch.unsqueeze  

        -1表示在最后一个维度进行拓展。

import torcha = torch.rand((1,2,3))
print(a)out = torch.unsqueeze(a,-1)
print(out)
print(out.shape)

3.3.5.6 torch.unbind  

        对维度进行删除,类似于tensor切分的过程:我们会拿到元组,和我们切分拿到的元组类似。

import torcha = torch.rand((1,2,3))
print(a)out = torch.unbind(a , dim=1)
print(out)

 tensor([[[0.4037, 0.2314, 0.8198], [0.5632, 0.1900, 0.5313]]])     1 \times 2 \times 3
(tensor([[0.4037, 0.2314, 0.8198]]), tensor([[0.5632, 0.1900, 0.5313]]))  (1 \times 3 ) * 2

        若对第三维进行切分,结果如下:(1 \times 2) *3

 

相关内容

热门资讯

AWSECS:访问外部网络时出... 如果您在AWS ECS中部署了应用程序,并且该应用程序需要访问外部网络,但是无法正常访问,可能是因为...
AWSElasticBeans... 在Dockerfile中手动配置nginx反向代理。例如,在Dockerfile中添加以下代码:FR...
银河麒麟V10SP1高级服务器... 银河麒麟高级服务器操作系统简介: 银河麒麟高级服务器操作系统V10是针对企业级关键业务...
北信源内网安全管理卸载 北信源内网安全管理是一款网络安全管理软件,主要用于保护内网安全。在日常使用过程中,卸载该软件是一种常...
AWR报告解读 WORKLOAD REPOSITORY PDB report (PDB snapshots) AW...
AWS管理控制台菜单和权限 要在AWS管理控制台中创建菜单和权限,您可以使用AWS Identity and Access Ma...
​ToDesk 远程工具安装及... 目录 前言 ToDesk 优势 ToDesk 下载安装 ToDesk 功能展示 文件传输 设备链接 ...
群晖外网访问终极解决方法:IP... 写在前面的话 受够了群晖的quickconnet的小水管了,急需一个新的解决方法&#x...
不能访问光猫的的管理页面 光猫是现代家庭宽带网络的重要组成部分,它可以提供高速稳定的网络连接。但是,有时候我们会遇到不能访问光...
Azure构建流程(Power... 这可能是由于配置错误导致的问题。请检查构建流程任务中的“发布构建制品”步骤,确保正确配置了“Arti...