IIC通信协议基础知识学习:硬件设计基础----通信协议IIC
设计IIC驱动模块,并进行仿真验证,观察仿真波形
新建工程,操作如图所示:
输入工程名和路径,如图:
选择创建RTL工程,如图:
直接点击Next:
继续点击Next:
添加芯片型号,操作如图:
工程创建完成:
创建工程文件,操作如图所示:
创建iic_drive文件:
创建完成:
双击打开,输入代码如下:
module iic_drive(
//系统接口input clk, //时钟信号,50MHZinput rst_n, //复位信号,低电平有效//IIC时序控制接口 input i2c_exec , //IIC触发执行信号input bit_ctrl , //字地址位控制(16b/8b)input i2c_rh_wl , //IIC读写控制信号input [15:0] i2c_addr , //IIC器件内地址input [ 7:0] i2c_data_w , //IIC要写的数据output reg [ 7:0] i2c_data_r , //IIC读出的数据output reg i2c_done , //IIC一次操作完成output reg i2c_ack , //IIC应答标志 0:应答 1:未应答
//IIC物理接口output reg scl , //IIC的SCL时钟信号inout sda , //IIC的SDA信号 //user interface output reg dri_clk //驱动IIC操作的驱动时钟);
parameter SLAVE_ADDR = 7'b1010000 ; //IIC从机地址
parameter CLK_FREQ = 26'd50_000_000; //模块输入的时钟频率
parameter I2C_FREQ = 18'd250_000; //IIC_SCL的时钟频率 ,250k
//状态机定义
localparam st_idle = 8'b0000_0001; //空闲状态
localparam st_sladdr = 8'b0000_0010; //发送器件地址(slave address)
localparam st_addr16 = 8'b0000_0100; //发送16位字地址
localparam st_addr8 = 8'b0000_1000; //发送8位字地址
localparam st_data_wr = 8'b0001_0000; //写数据(8 bit)
localparam st_addr_rd = 8'b0010_0000; //发送器件地址读
localparam st_data_rd = 8'b0100_0000; //读数据(8 bit)
localparam st_stop = 8'b1000_0000; //结束IIC操作
//reg 定义
reg sda_dir ; //IIC数据(SDA)方向控制
reg sda_out ; //SDA输出信号
reg st_done ; //状态结束
reg wr_flag ; //写标志
reg [ 6:0] cnt ; //计数
reg [ 7:0] cur_state ; //状态机当前状态
reg [ 7:0] next_state; //状态机下一状态
reg [15:0] addr_t ; //地址
reg [ 7:0] data_r ; //读取的数据
reg [ 7:0] data_wr_t ; //IIC需写的数据的临时寄存
reg [ 9:0] clk_cnt ; //分频时钟计数//wire 定义
wire sda_in ; //SDA输入信号
wire [8:0] clk_divide ; //模块驱动时钟的分频系数
//SDA控制
assign sda = sda_dir ? sda_out : 1'bz ; //SDA数据输出或高阻
assign sda_in = sda ; //SDA数据输入
assign clk_divide = (CLK_FREQ/I2C_FREQ) >> 2'd2 ; //模块驱动时钟的分频系数//生成IIC的SCL的四倍频率的驱动时钟用于驱动IIC的操作
always @(posedge clk or negedge rst_n) beginif(!rst_n) begindri_clk <= 1'b0;clk_cnt <= 10'd0;endelse if(clk_cnt == clk_divide[8:1] - 1'd1) beginclk_cnt <= 10'd0;dri_clk <= ~dri_clk;endelseclk_cnt <= clk_cnt + 1'b1;
end//(三段式状态机)同步时序描述状态转移
always @(posedge dri_clk or negedge rst_n) beginif(!rst_n)cur_state <= st_idle;elsecur_state <= next_state;
end//组合逻辑判断状态转移条件
always @(*) beginnext_state = st_idle;case(cur_state)st_idle: begin //空闲状态if(i2c_exec) beginnext_state = st_sladdr;endelsenext_state = st_idle;endst_sladdr: beginif(st_done) beginif(bit_ctrl) //判断是16位还是8位字地址next_state = st_addr16;elsenext_state = st_addr8 ;endelsenext_state = st_sladdr;endst_addr16: begin //写16位字地址if(st_done) beginnext_state = st_addr8;endelse beginnext_state = st_addr16;endendst_addr8: begin //8位字地址if(st_done) beginif(wr_flag==1'b0) //读写判断next_state = st_data_wr;elsenext_state = st_addr_rd;endelse beginnext_state = st_addr8;endendst_data_wr: begin //写数据(8 bit)if(st_done)next_state = st_stop;elsenext_state = st_data_wr;endst_addr_rd: begin //写地址以进行读数据if(st_done) beginnext_state = st_data_rd;endelse beginnext_state = st_addr_rd;endendst_data_rd: begin //读取数据(8 bit)if(st_done)next_state = st_stop;elsenext_state = st_data_rd;endst_stop: begin //结束I2C操作if(st_done)next_state = st_idle;elsenext_state = st_stop ;enddefault: next_state= st_idle;endcase
end//时序电路描述状态输出
always @(posedge dri_clk or negedge rst_n) begin//复位初始化if(!rst_n) beginscl <= 1'b1;sda_out <= 1'b1;sda_dir <= 1'b1; i2c_done <= 1'b0; i2c_ack <= 1'b0; cnt <= 1'b0; st_done <= 1'b0; data_r <= 1'b0; i2c_data_r<= 1'b0; wr_flag <= 1'b0; addr_t <= 1'b0; data_wr_t <= 1'b0; end else begin st_done <= 1'b0 ; cnt <= cnt +1'b1 ; case(cur_state) st_idle: begin //空闲状态scl <= 1'b1; sda_out <= 1'b1; sda_dir <= 1'b1; i2c_done<= 1'b0; cnt <= 7'b0; if(i2c_exec) begin wr_flag <= i2c_rh_wl ; addr_t <= i2c_addr ; data_wr_t <= i2c_data_w; i2c_ack <= 1'b0; end end st_sladdr: begin //写地址(器件地址和字地址)case(cnt) 7'd1 : sda_out <= 1'b0; //开始IIC7'd3 : scl <= 1'b0; 7'd4 : sda_out <= SLAVE_ADDR[6]; //传送器件地址7'd5 : scl <= 1'b1; 7'd7 : scl <= 1'b0; 7'd8 : sda_out <= SLAVE_ADDR[5]; 7'd9 : scl <= 1'b1; 7'd11: scl <= 1'b0; 7'd12: sda_out <= SLAVE_ADDR[4]; 7'd13: scl <= 1'b1; 7'd15: scl <= 1'b0; 7'd16: sda_out <= SLAVE_ADDR[3]; 7'd17: scl <= 1'b1; 7'd19: scl <= 1'b0; 7'd20: sda_out <= SLAVE_ADDR[2]; 7'd21: scl <= 1'b1; 7'd23: scl <= 1'b0; 7'd24: sda_out <= SLAVE_ADDR[1]; 7'd25: scl <= 1'b1; 7'd27: scl <= 1'b0; 7'd28: sda_out <= SLAVE_ADDR[0]; 7'd29: scl <= 1'b1; 7'd31: scl <= 1'b0; 7'd32: sda_out <= 1'b0; //0:写7'd33: scl <= 1'b1; 7'd35: scl <= 1'b0; 7'd36: begin sda_dir <= 1'b0; sda_out <= 1'b1; end 7'd37: scl <= 1'b1; 7'd38: begin //从机应答 st_done <= 1'b1;if(sda_in == 1'b1) //高电平表示未应答i2c_ack <= 1'b1; //拉高应答标志位 end 7'd39: begin scl <= 1'b0; cnt <= 1'b0; end default : ; endcase end st_addr16: begin case(cnt) 7'd0 : begin sda_dir <= 1'b1 ; sda_out <= addr_t[15]; //传送字地址end 7'd1 : scl <= 1'b1; 7'd3 : scl <= 1'b0; 7'd4 : sda_out <= addr_t[14]; 7'd5 : scl <= 1'b1; 7'd7 : scl <= 1'b0; 7'd8 : sda_out <= addr_t[13]; 7'd9 : scl <= 1'b1; 7'd11: scl <= 1'b0; 7'd12: sda_out <= addr_t[12]; 7'd13: scl <= 1'b1; 7'd15: scl <= 1'b0; 7'd16: sda_out <= addr_t[11]; 7'd17: scl <= 1'b1; 7'd19: scl <= 1'b0; 7'd20: sda_out <= addr_t[10]; 7'd21: scl <= 1'b1; 7'd23: scl <= 1'b0; 7'd24: sda_out <= addr_t[9]; 7'd25: scl <= 1'b1; 7'd27: scl <= 1'b0; 7'd28: sda_out <= addr_t[8]; 7'd29: scl <= 1'b1; 7'd31: scl <= 1'b0; 7'd32: begin sda_dir <= 1'b0; sda_out <= 1'b1; end 7'd33: scl <= 1'b1; 7'd34: begin //从机应答st_done <= 1'b1; if(sda_in == 1'b1) //高电平表示未应答i2c_ack <= 1'b1; //拉高应答标志位 end 7'd35: begin scl <= 1'b0; cnt <= 1'b0; end default : ; endcase end st_addr8: begin case(cnt) 7'd0: begin sda_dir <= 1'b1 ; sda_out <= addr_t[7]; //字地址end 7'd1 : scl <= 1'b1; 7'd3 : scl <= 1'b0; 7'd4 : sda_out <= addr_t[6]; 7'd5 : scl <= 1'b1; 7'd7 : scl <= 1'b0; 7'd8 : sda_out <= addr_t[5]; 7'd9 : scl <= 1'b1; 7'd11: scl <= 1'b0; 7'd12: sda_out <= addr_t[4]; 7'd13: scl <= 1'b1; 7'd15: scl <= 1'b0; 7'd16: sda_out <= addr_t[3]; 7'd17: scl <= 1'b1; 7'd19: scl <= 1'b0; 7'd20: sda_out <= addr_t[2]; 7'd21: scl <= 1'b1; 7'd23: scl <= 1'b0; 7'd24: sda_out <= addr_t[1]; 7'd25: scl <= 1'b1; 7'd27: scl <= 1'b0; 7'd28: sda_out <= addr_t[0]; 7'd29: scl <= 1'b1; 7'd31: scl <= 1'b0; 7'd32: begin sda_dir <= 1'b0; sda_out <= 1'b1; end 7'd33: scl <= 1'b1; 7'd34: begin //从机应答st_done <= 1'b1; if(sda_in == 1'b1) //高电平表示未应答i2c_ack <= 1'b1; //拉高应答标志位 end 7'd35: begin scl <= 1'b0; cnt <= 1'b0; end default : ; endcase end st_data_wr: begin //写数据(8 bit)case(cnt) 7'd0: begin sda_out <= data_wr_t[7]; //IIC写8位数据sda_dir <= 1'b1; end 7'd1 : scl <= 1'b1; 7'd3 : scl <= 1'b0; 7'd4 : sda_out <= data_wr_t[6]; 7'd5 : scl <= 1'b1; 7'd7 : scl <= 1'b0; 7'd8 : sda_out <= data_wr_t[5]; 7'd9 : scl <= 1'b1; 7'd11: scl <= 1'b0; 7'd12: sda_out <= data_wr_t[4]; 7'd13: scl <= 1'b1; 7'd15: scl <= 1'b0; 7'd16: sda_out <= data_wr_t[3]; 7'd17: scl <= 1'b1; 7'd19: scl <= 1'b0; 7'd20: sda_out <= data_wr_t[2]; 7'd21: scl <= 1'b1; 7'd23: scl <= 1'b0; 7'd24: sda_out <= data_wr_t[1]; 7'd25: scl <= 1'b1; 7'd27: scl <= 1'b0; 7'd28: sda_out <= data_wr_t[0]; 7'd29: scl <= 1'b1; 7'd31: scl <= 1'b0; 7'd32: begin sda_dir <= 1'b0; sda_out <= 1'b1; end 7'd33: scl <= 1'b1; 7'd34: begin //从机应答st_done <= 1'b1; if(sda_in == 1'b1) //高电平表示未应答i2c_ack <= 1'b1; //拉高应答标志位 end 7'd35: begin scl <= 1'b0; cnt <= 1'b0; end default : ; endcase end st_addr_rd: begin //写地址以进行读数据case(cnt) 7'd0 : begin sda_dir <= 1'b1; sda_out <= 1'b1; end 7'd1 : scl <= 1'b1; 7'd2 : sda_out <= 1'b0; //重新开始7'd3 : scl <= 1'b0; 7'd4 : sda_out <= SLAVE_ADDR[6]; //传送器件地址7'd5 : scl <= 1'b1; 7'd7 : scl <= 1'b0; 7'd8 : sda_out <= SLAVE_ADDR[5]; 7'd9 : scl <= 1'b1; 7'd11: scl <= 1'b0; 7'd12: sda_out <= SLAVE_ADDR[4]; 7'd13: scl <= 1'b1; 7'd15: scl <= 1'b0; 7'd16: sda_out <= SLAVE_ADDR[3]; 7'd17: scl <= 1'b1; 7'd19: scl <= 1'b0; 7'd20: sda_out <= SLAVE_ADDR[2]; 7'd21: scl <= 1'b1; 7'd23: scl <= 1'b0; 7'd24: sda_out <= SLAVE_ADDR[1]; 7'd25: scl <= 1'b1; 7'd27: scl <= 1'b0; 7'd28: sda_out <= SLAVE_ADDR[0]; 7'd29: scl <= 1'b1; 7'd31: scl <= 1'b0; 7'd32: sda_out <= 1'b1; //1:读7'd33: scl <= 1'b1; 7'd35: scl <= 1'b0; 7'd36: begin sda_dir <= 1'b0; sda_out <= 1'b1; end7'd37: scl <= 1'b1;7'd38: begin //从机应答st_done <= 1'b1; if(sda_in == 1'b1) //高电平表示未应答i2c_ack <= 1'b1; //拉高应答标志位 end 7'd39: beginscl <= 1'b0;cnt <= 1'b0;enddefault : ;endcaseendst_data_rd: begin //读取数据(8 bit)case(cnt)7'd0: sda_dir <= 1'b0;7'd1: begindata_r[7] <= sda_in;scl <= 1'b1;end7'd3: scl <= 1'b0;7'd5: begindata_r[6] <= sda_in ;scl <= 1'b1 ;end7'd7: scl <= 1'b0;7'd9: begindata_r[5] <= sda_in;scl <= 1'b1 ;end7'd11: scl <= 1'b0;7'd13: begindata_r[4] <= sda_in;scl <= 1'b1 ;end7'd15: scl <= 1'b0;7'd17: begindata_r[3] <= sda_in;scl <= 1'b1 ;end7'd19: scl <= 1'b0;7'd21: begindata_r[2] <= sda_in;scl <= 1'b1 ;end7'd23: scl <= 1'b0;7'd25: begindata_r[1] <= sda_in;scl <= 1'b1 ;end7'd27: scl <= 1'b0;7'd29: begindata_r[0] <= sda_in;scl <= 1'b1 ;end7'd31: scl <= 1'b0;7'd32: beginsda_dir <= 1'b1; sda_out <= 1'b1;end7'd33: scl <= 1'b1;7'd34: st_done <= 1'b1; //非应答7'd35: beginscl <= 1'b0;cnt <= 1'b0;i2c_data_r <= data_r;enddefault : ;endcaseendst_stop: begin //结束IIC操作case(cnt)7'd0: beginsda_dir <= 1'b1; //结束IICsda_out <= 1'b0;end7'd1 : scl <= 1'b1;7'd3 : sda_out <= 1'b1;7'd15: st_done <= 1'b1;7'd16: begincnt <= 1'b0;i2c_done <= 1'b1; //向上层模块传递IIC结束信号enddefault : ;endcaseendendcaseend
end
endmodule
如图所示:
对设计进行分析,操作如图:
分析后的设计,Vivado自动生成顶层原理图,如图:
对设计进行综合,操作如图:
综合完成后,弹出窗口如下,直接关闭:
创建约束文件,操作如图所示:
创建约束文件,输入文件名:
双击打开,输入约束代码:
set_property -dict {PACKAGE_PIN U18 IOSTANDARD LVCMOS33} [get_ports sys_clk]
set_property -dict {PACKAGE_PIN J15 IOSTANDARD LVCMOS33} [get_ports sys_rst_n]
如图所示:
点击 Flow Navigator 窗口中的 Run Implementation,如图所示:
点击OK:
完成后,关闭即可:
创建TestBench,操作如图所示:
创建激励文件,输入文件名:
创建完成:
双击打开,输入TestBench(激励)代码:
`timescale 1ns/1ns //定义仿真时间单位1ns和仿真时间精度为1nsmodule tb_iic_drive; //parameter define
parameter T = 20; //时钟周期为20ns
parameter IIC_WR_CYCYLE = 10_000;
parameter SLAVE_ADDR = 7'b1010000 ; //EEPROM从机地址
parameter CLK_FREQ = 26'd50_000_000; //模块输入的时钟频率
parameter I2C_FREQ = 18'd250_000; //IIC_SCL的时钟频率//reg define
reg sys_clk; //时钟信号
reg sys_rst_n; //复位信号reg i2c_exec ;
reg bit_ctrl ;
reg i2c_rh_wl ;
reg [15:0] i2c_addr ;
reg [7:0] i2c_data_w;
reg [3:0] flow_cnt ;
reg [13:0] delay_cnt ;//wire define
wire [7:0] i2c_data_r;
wire i2c_done ;
wire i2c_ack ;
wire scl ;
wire sda ;
wire dri_clk ;//给输入信号初始值
initial beginsys_clk = 1'b0;sys_rst_n = 1'b0; //复位#(T+1) sys_rst_n = 1'b1; //在第21ns的时候复位信号信号拉高
end//50Mhz的时钟,周期则为1/50Mhz=20ns,所以每10ns,电平取反一次
always #(T/2) sys_clk = ~sys_clk;always @(posedge dri_clk or negedge sys_rst_n) beginif(!sys_rst_n) begini2c_exec <= 1'b0;bit_ctrl <= 1'b0;i2c_rh_wl <= 1'b0;i2c_addr <= 1'b0;i2c_data_w <= 1'b0;flow_cnt <= 1'b0;delay_cnt <= 1'b0;endelse begincase(flow_cnt)'d0 : flow_cnt <= flow_cnt + 1'b1;'d1 : begini2c_exec <= 1'b1; //拉高触发信号bit_ctrl <= 1'b1; //地址位选择信号 1: 16位i2c_rh_wl <= 1'b0; //写操作i2c_addr <= 16'h0555; //写地址i2c_data_w <= 8'hAA; //写数据flow_cnt <= flow_cnt + 1'b1;end'd2 : begin i2c_exec <= 1'b0;flow_cnt <= flow_cnt + 1'b1;end 'd3 : beginif(i2c_done)flow_cnt <= flow_cnt + 1'b1;end'd4 : begindelay_cnt <= delay_cnt + 1'b1;if(delay_cnt == IIC_WR_CYCYLE - 1'b1)flow_cnt <= flow_cnt + 1'b1;end'd5 : begini2c_exec <= 1'b1;bit_ctrl <= 1'b1; i2c_rh_wl <= 1'b1; //读操作 i2c_addr <= 16'h0555;i2c_data_w <= 8'hAA; flow_cnt <= flow_cnt + 1'b1; end'd6 : begin i2c_exec <= 1'b0;flow_cnt <= flow_cnt + 1'b1;end 'd7 : beginif(i2c_done)flow_cnt <= flow_cnt + 1'b1;enddefault:;endcase end
endpullup(sda);//例化
iic_drive #(.SLAVE_ADDR (SLAVE_ADDR), //EEPROM从机地址.CLK_FREQ (CLK_FREQ ), //模块输入的时钟频率.I2C_FREQ (I2C_FREQ ) //IIC_SCL的时钟频率
) u_iic_drive(.clk (sys_clk),.rst_n (sys_rst_n), .i2c_exec (i2c_exec ), .bit_ctrl (bit_ctrl ), .i2c_rh_wl (i2c_rh_wl ), .i2c_addr (i2c_addr ), .i2c_data_w (i2c_data_w), .i2c_data_r (i2c_data_r), .i2c_done (i2c_done ), .i2c_ack (i2c_ack ), .scl (scl ), .sda (sda ),.dri_clk (dri_clk )
);endmodule
如图所示:
开始进行仿真,操作如下:
开始仿真:
仿真波形如图:
致谢领航者ZYNQ开发板,开启FPGA学习之路!
希望本文对大家有帮助,上文若有不妥之处,欢迎指正
分享决定高度,学习拉开差距