m基于VDLL的矢量型GPS信号跟踪算法matlab仿真
创始人
2024-03-15 04:41:18
0

目录

1.算法概述

2.仿真效果预览

3.MATLAB部分代码预览

4.完整MATLAB程序


1.算法概述

      载波跟踪环是传统独立式GPS接收机最脆弱的环节,针对弱信号环境下其比伪码跟踪环路更容易失锁的问题,给出一种基于矢量频率锁定环(vector-frequency lock loop,VFLL)的载波跟踪方法。给出VFLL理论推导及实现过程,并以最小二乘估计方法证明VFLL在载波跟踪性能上优于频率锁定环(frequency lock loop,FLL)。静止场景时9颗卫星实验结果显示,本文给出的方法能够实现14 dB/Hz微弱GPS信号的载波跟踪。 矢量型GPS信号跟踪算法(矢量延迟锁定环VDLL)


 

   而在VDLL中,仅仅在DLL中对码跟踪进行改进,使其通过中心滤波器,而载波跟踪和传统的算法相同。所以,下面将重点对延迟锁定环进行改进,也就是你的课题的VDLL延迟锁定环。而VDFLL则是对码和载波分别进行改进。其基本结构如下所示:

       即使用卡尔曼替代PLL,使用EKF替代DLL。这个是VDFLL,而VDLL则使用扩展卡尔曼滤波替代原DLL即可。

       提出的VDLL(vector delay lock loop)方法直接估计用户位置信息,由于用户物理动态有限,与传统的独立通道码环相比,跟踪的维度和带宽都更小,所以该方法具有更强的鲁棒性.阐述了VDLL与传统独立通道码跟踪环的本质区别,建立了VDLL的非线性系统模型,推导了系统观测量与传输延迟估计误差的具体线性化关系,确立了观测误差方差矩阵的计算公式;然后对非线性系统模型进行线性化,给出了多卫星联合跟踪下用户位置更新的EKF(extended Kalman filte-ring)滤波算法.

EKF

      扩展卡尔曼滤波(Extended Kalman Filter,EKF)是标准卡尔曼滤波在非线性情形下的一种扩展形式,它是一种高效率的递归滤波器(自回归滤波器)。EKF的基本思想是利用泰勒级数展开将非线性系统线性化,然后采用卡尔曼滤波框架对信号进行滤波,因此它是一种次优滤波。

标准卡尔曼滤波KF的状态转移方程和观测方程为 

{​{\mathbf{\theta }}_{k}}=\mathbf{A}{​{\mathbf{\theta }}_{k-1}}+\mathbf{B}{​{\mathbf{u}}_{k-1}}+{​{\mathbf{s}}_{k}}

{​{\mathbf{z}}_{k}}=\mathbf{C}{​{\mathbf{\theta }}_{k}}+{​{\mathbf{v}}_{k}}

扩展卡尔曼滤波EKF的状态转移方程和观测方程为

{​{\mathbf{\theta }}_{k}}=f({​{\mathbf{\theta }}_{k-1}})+{​{\mathbf{s}}_{k}}          (1)

{​{\mathbf{z}}_{k}}=h({​{\mathbf{\theta }}_{k}})+{​{\mathbf{v}}_{k}}             (2)

利用泰勒展开式对(1)式在上一次的估计值处展开得

{​{\mathbf{\theta }}_{k}}=f({​{\mathbf{\theta }}_{k-1}})+{​{\mathbf{s}}_{k}}=f(\left\langle {​{\mathbf{\theta }}_{k-1}} \right\rangle )+{​{\mathbf{F}}_{k-1}}\left( {​{\mathbf{\theta }}_{k-1}}-\left\langle {​{\mathbf{\theta }}_{k-1}} \right\rangle \right)+{​{\mathbf{s}}_{k}}          (3)

 再利用泰勒展开式对(2)式在本轮的状态预测值处展开得

{​{\mathbf{z}}_{k}}=h({​{\mathbf{\theta }}_{k}})+{​{\mathbf{v}}_{k}}=h\left( \mathbf{\theta }_{​{k}}^{\mathbf{'}} \right)+{​{\mathbf{H}}_{k}}\left( {​{\mathbf{\theta }}_{k}}-\mathbf{\theta }_{​{k}}^{\mathbf{'}} \right)+{​{\mathbf{v}}_{k}}            (4)

其中,{\mathbf{F}}_{k-1}{\mathbf{H}}_{k}分别表示函数f(\mathbf{\theta })h(\mathbf{\theta })\left\langle {​{\mathbf{\theta }}_{k-1}} \right\rangle\mathbf{\theta }_{k}^{'}处的雅克比矩阵。

(注:这里对泰勒展开式只保留到一阶导,二阶导数以上的都舍去,噪声假设均为加性高斯噪声)

基于以上的公式,给出EKF的预测(Predict)和更新(Update)两个步骤:

Propagation:

\mathbf{\theta }_{k}^{'}=f(\left\langle {​{\mathbf{\theta }}_{k-1}} \right\rangle)

\mathbf{\Sigma }_{k}^{'}=\mathbf{F}_{k-1}{​{\mathbf{\Sigma }}_{k-1}}{​{\mathbf{F}}_{k-1}^{T}}+\mathbf{Q}

Update:

\mathbf{S}_{k}^{'}={​{\left( \mathbf{H_{k}\Sigma }_{k}^{'}{​{\mathbf{H}}_{k}^{T}}+\mathbf{R} \right)}^{-1}}

\mathbf{K}_{k}^{'}=\mathbf{\Sigma }_{k}^{'}{​{\mathbf{H}}_{k}^{T}}\mathbf{S}_{k}^{'}

\left\langle {​{\mathbf{\theta }}_{k}} \right\rangle =\mathbf{\theta }_{k}^{'}+\mathbf{K}_{k}^{'}\left( {​{\mathbf{z}}_{k}}-{h(\theta }_{k}^{'}) \right)

{​{\mathbf{\Sigma }}_{k}}=\left( \mathbf{I}-\mathbf{K}_{k}^{'}\mathbf{H}_{k} \right)\mathbf{\Sigma }_{k}^{'}

其中的雅克比矩阵{\mathbf{F}}_{k-1}{\mathbf{H}}_{k}分别为

{​{\mathbf{F}}_{k-1}}={​{\left. \frac{\partial f}{\partial \mathbf{\theta }} \right|}_{\left\langle {​{\mathbf{\theta }}_{k-1}} \right\rangle }}{​{\mathbf{H}}_{k}}={​{\left. \frac{\partial h}{\partial \mathbf{\theta }} \right|}_{\mathbf{\theta }_{k}^{'}}}

       雅可比矩阵的计算,在MATLAB中可以利用对自变量加上一个eps(极小数),然后用因变量的变化量去除以eps即可得到雅可比矩阵的每一个元素值。

2.仿真效果预览

matlab2022a仿真结果如下:

 

 

 

 

 

 

3.MATLAB部分代码预览

...............................................................
%参数初始化 
time      = 1000*(10^(-3));     % 数据发送时间
time_unit = 20*(10^(-3));      % 数据跳变时间单位
time_cyc  = 1*(10^(-3));       % 一个完整扩频码周期
fs        = 5*(10^6);
nn        = time_cyc*fs;
kk        = (time/time_cyc)*nn;% 数据总采样点
F_if      = 1.25*(10^6);       % 载波中频
F_Carrier = 1575.42*(10^6);    % L1波段载波频率
CA_freq   = 1.023*(10^6);      % CA码速率%%
%%
%生成C/A码
PN = func_CAcodegen(svnum);
CA = [];
k  = 5;
for n = 1:length(PN)CA((1+k*(n-1)):k*n) = PN(n)*ones(1,k);%CA码扩展
end
tc                      = 1/(k*CA_freq); 
loop_time               = time/time_cyc;%%
%%
%模拟产生测试信号源
[Signal_Source,Phase_signal,buffer_bit_data]=func_CreateSource(iniphcode,inifd,iniph,snr); %%
%%
%在模拟之前,首先需要进行捕获
[fd_ac,f_ac_code,Corr_value] = func_acquire(Signal_Source);
figure
mesh(Corr_value);title('捕获结果');%信号中断起始时间
break_start = 400;
break_end   = 800;P0            = [0 00 1];
P             = [P0 zeros(2,2*(loop_time-1))];
T             = 0.1;
LL            = loop_time;
Y0            = [0;1];
data_out(:,1) = Y0;           %Y的第一列等于Y0
A             = [1 T0 1];   
B             = [1/2*(T)^2 T]';
H             = [1 0];
Q             = (0.25)^2; 
R             = (0.25)^2; 
X             = zeros(1,loop_time);%%
%%
%跟踪参数设置
tracking_parameter();
%进行跟踪
for i = 1:1:loop_time   i%开始循环,每次循环去除一段数据%开始循环,每次循环去除一段数据%模拟信号突然中断if i > break_start & i < break_endSignal = 0.0001*rand(1,nn);%中断的时候,该段数据为随机的噪声干扰elseSignal = Signal_Source((i-1)*nn+1:i*nn);end%产生本地载波t                 = [0:nn-1]*ts;track_dopplar     = fd_ac + track_freq_pll;Track_Freq_Buffer = [Track_Freq_Buffer track_dopplar];track_dopplar2    = [track_dopplar2   track_freq_pll];Local_I           = cos(2*pi*(F_if+track_dopplar)*t + Last_Phase);Local_Q           = sin(2*pi*(F_if+track_dopplar)*t + Last_Phase);Iph               = 2*pi*(F_if+track_dopplar)*t + Last_Phase;Local_Ph_Buffer   = [Local_Ph_Buffer Iph];Last_Phase        = Last_Phase + 2*pi*(F_if+track_dopplar)*time_cyc;   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Carrier_I         = Local_I;%产生本地的载波Carrier_Q         = Local_Q;%产生本地的载波%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%产生本地相位码%利用DLL的思路%当前ph_code_p = offside;fd_code_p = track_dopplar;CA_Code_p = func_CA(ph_code_p,fd_code_p,i);lc_p      = CA_Code_p.*Signal;%早ph_code_e = offside+diffoffside;fd_code_e = track_dopplar;CA_Code_e = func_CA(ph_code_e,fd_code_e,i);lc_e      = CA_Code_e.*Signal;        %迟ph_code_l = offside-diffoffside;fd_code_l = track_dopplar;CA_Code_l = func_CA(ph_code_l,fd_code_l,i);lc_l      = CA_Code_l.*Signal;%下变频Local_P_I = lc_p.*Carrier_I;Local_P_Q = lc_p.*Carrier_Q;Local_E_I = lc_e.*Carrier_I;Local_E_Q = lc_e.*Carrier_Q;Local_L_I = lc_l.*Carrier_I;Local_L_Q = lc_l.*Carrier_Q;%积分运算IPSum     = sum(Local_P_I);QPSum     = sum(Local_P_Q);IESum     = sum(Local_E_I);QESum     = sum(Local_E_Q);ILSum     = sum(Local_L_I);QLSum     = sum(Local_L_Q);%码相位环路控制%鉴想器 theta_code        = ((IESum.^2+QESum.^2)-(ILSum.^2+QLSum.^2))/((IESum.^2+QESum.^2)+(ILSum.^2+QLSum.^2));I2_Q2(i)          = IESum.^2 + QESum .^2;%kalmandata(:,i)       = theta_code;j               = (i-1)*2+1;K               = P(:,j:j+1)*H'*inv(H*P(:,j:j+1)*H'+R);%滤波增益data_out(:,i)   = data_out(:,i)+K*(data(1,1)-H*data_out(:,i));  %估计data_out(:,i+1) = A*data_out(:,i);                     %预测P(:,j:j+1)      = (eye(2,2)-K*H)*P(:,j:j+1);  %误差P(:,j+2:j+3)    = A*P(:,j:j+1)*A'+B*Q*B';   %kalman滤波CodeErr         = data_out(1,i)/20;%码环NCOoffside           = offside_old+k1*CodeErr;      %码NCO的输出theta_code_old    = theta_code;  %将当前结果保存,用于下一个循环的码跟踪CodeErr_old       = CodeErr;        %将当前结果保存,用于下一个循环的码跟踪offside_old       = offside;        %将当前结果保存,用于下一个循环的码跟踪Bk_DLL            = [Bk_DLL theta_code];   %记录跟踪过程中的码环鉴想器的输出Track_Code_Buffer = [Track_Code_Buffer offside];  %记录跟踪过程中的码环NCO的数出%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%载波跟踪%载波跟踪%载波跟踪theta_pll      = atan(QPSum/IPSum);PLLinput       = theta_pll/(2*pi*time_cyc);Bk_PLL         = [Bk_PLL theta_pll];%LoopFilter       PLLoutput      = func_CarLoopFilter(carrierw,carrierpllb/2,PLLinput,PLLinput_old,PLLoutput_old); track_freq_pll = -PLLoutput;PLLinput_old   = PLLinput;       PLLoutput_old  = PLLoutput;       adj_flag          = track_dopplar - track_dopplar_old; track_dopplar_old = track_dopplar; adj_buffer        = [adj_buffer adj_flag];outdata           = sign(real(IPSum)); ALL_Buffer_Data   = [ALL_Buffer_Data outdata];if adj_flag < 1      add = add+1;elseadd = 0;endif add >= 2          dem_flag = 1;endif dem_flag == 1count_time   = i;count_buffer = [count_buffer count_time];Buffer_Data  = [Buffer_Data outdata];end
end%%
%%
%位同步与数据解调
Buffer_Data_out = func_bitssync(Buffer_Data,count_buffer);  
l_i_d           = time/time_unit;
l_o_d           = length(Buffer_Data_out);
l_zeros         = l_i_d - l_o_d;
Buffer_Data_out = [zeros(1,l_zeros) Buffer_Data_out]; %跟踪误差
l_dll     = length(Track_Code_Buffer);
l_fll     = length(Track_Freq_Buffer);
diata_dll = (Track_Code_Buffer(40:l_dll)-iniphcode);  break_start = 400;
break_end   = 800;
%多普勒频率跟踪
figure;
plot(Track_Freq_Buffer);
xlabel('时间(ms)');
ylabel('多普勒频率跟踪结果(Hz)')
title('多普勒频率跟踪结果');
grid on
hold onplot(break_start,min(Track_Freq_Buffer):0.01:max(Track_Freq_Buffer),'r-*','LineWidth',3);hold on
plot(break_end,min(Track_Freq_Buffer):0.01:max(Track_Freq_Buffer),'r-*','LineWidth',3);hold offfigure;
plot(I2_Q2(1:end),'LineWidth',3);
xlabel('时间(ms)');
ylabel('I^2+Q^2(Hz)')
title('I^2+Q^2');
grid on
hold onplot(break_start,min(I2_Q2(1:end)):100000:max(I2_Q2(1:end)),'r-*','LineWidth',3);hold on
plot(break_end,min(I2_Q2(1:end)):100000:max(I2_Q2(1:end)),'r-*','LineWidth',3);hold off%码相位跟踪
figure;
subplot(211);
plot(Track_Code_Buffer);
xlabel('时间(ms)');
ylabel('码相位跟踪结果');
title('码相位跟踪结果');
grid on
axis([0,length(Track_Code_Buffer),0.8*iniphcode,1.2*iniphcode]);
subplot(212);
plot(diata_dll);
xlabel('时间(ms)');
ylabel('码相位跟踪误差');
title('码相位跟踪误差');
grid on
axis([0,length(diata_dll),-10,10]); 
hold onplot(break_start,-10:0.1:10,'r-*','LineWidth',3);hold on
plot(break_end,-10:0.1:10,'r-*','LineWidth',3);hold off
01_048_m

4.完整MATLAB程序

matlab源码说明_我爱C编程的博客-CSDN博客

V

相关内容

热门资讯

AWSECS:访问外部网络时出... 如果您在AWS ECS中部署了应用程序,并且该应用程序需要访问外部网络,但是无法正常访问,可能是因为...
AWSElasticBeans... 在Dockerfile中手动配置nginx反向代理。例如,在Dockerfile中添加以下代码:FR...
银河麒麟V10SP1高级服务器... 银河麒麟高级服务器操作系统简介: 银河麒麟高级服务器操作系统V10是针对企业级关键业务...
北信源内网安全管理卸载 北信源内网安全管理是一款网络安全管理软件,主要用于保护内网安全。在日常使用过程中,卸载该软件是一种常...
AWR报告解读 WORKLOAD REPOSITORY PDB report (PDB snapshots) AW...
AWS管理控制台菜单和权限 要在AWS管理控制台中创建菜单和权限,您可以使用AWS Identity and Access Ma...
​ToDesk 远程工具安装及... 目录 前言 ToDesk 优势 ToDesk 下载安装 ToDesk 功能展示 文件传输 设备链接 ...
群晖外网访问终极解决方法:IP... 写在前面的话 受够了群晖的quickconnet的小水管了,急需一个新的解决方法&#x...
不能访问光猫的的管理页面 光猫是现代家庭宽带网络的重要组成部分,它可以提供高速稳定的网络连接。但是,有时候我们会遇到不能访问光...
Azure构建流程(Power... 这可能是由于配置错误导致的问题。请检查构建流程任务中的“发布构建制品”步骤,确保正确配置了“Arti...