最近达摩院放出了目前最能打的yolo算法,时间和精度都得到了提升
目前代码已经开源:
代码地址:GitHub - tinyvision/DAMO-YOLO: DAMO-YOLO: a fast and accurate object detection method with some new techs, including NAS backbones, efficient RepGFPN, ZeroHead, AlignedOTA, and distillation enhancement.
代码预设仅支持分布式训练,对于硬件资源有限的小伙伴来说,算法的训练就不是太友好了,但是对于想要尝试的小伙伴还是有办法的
#!/usr/bin/env python
# Copyright (C) Alibaba Group Holding Limited. All rights reserved.
import argparse
import copy
import os
import torch
from loguru import loggerfrom damo.apis import Trainer
from damo.config.base import parse_config
from damo.utils import synchronize
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12345'def make_parser():"""Create a parser with some common arguments used by users.Returns:argparse.ArgumentParser"""parser = argparse.ArgumentParser('Damo-Yolo train parser')parser.add_argument('-f','--config_file',default=r'G:\xxx\DAMO-YOLO\configs\damoyolo_tinynasL20_T.py', # xxx自己的路径type=str,help='plz input your config file',)parser.add_argument('--local_rank', type=int, default=0)parser.add_argument('--tea_config', type=str, default=None)parser.add_argument('--tea_ckpt', type=str, default=None)parser.add_argument('opts',help='Modify config options using the command-line',default=None,nargs=argparse.REMAINDER,)return parser@logger.catch
def main():args = make_parser().parse_args()torch.cuda.set_device(args.local_rank)# torch.distributed.init_process_group(backend='nccl', init_method='env://', world_size=torch.cuda.device_count(), rank=args.local_rank)try:world_size = torch.cuda.device_count() # int(os.environ["WORLD_SIZE"])rank = args.local_rank # int(os.environ["RANK"])# distributed.init_process_group("nccl")torch.distributed.init_process_group("gloo",rank=rank,world_size=world_size)except KeyError:world_size = torch.cuda.device_count()rank = args.local_ranktorch.distributed.init_process_group(backend="nccl",init_method='env://',rank=rank,world_size=world_size,)synchronize()if args.tea_config is not None:tea_config = parse_config(args.tea_config)else:tea_config = Noneconfig = parse_config(args.config_file)config.merge(args.opts)trainer = Trainer(config, args, tea_config)trainer.train(args.local_rank)if __name__ == '__main__':main()
1、增加
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12345'
否则会报:
ValueError: Error initializing torch.distributed using env:// rendezvous: environment variable MASTER_ADDR expected, but not set
or
ValueError: Error initializing torch.distributed using env:// rendezvous: environment variable MASTER_PORT expected, but not set
2、windows不支持nccl backbone所以init_process_group中改为‘gloo’
二、改配置configs\xxx.py
如damoyolo_tinynasL20_T.py找到代码17行的
self.train.batch_size = 256 --->调小即可
ps:建议设置为8, 训练过程中占用显存较大
三、改数据集路径
damo\config\paths_catalog.py
找到代码的第8行修改
DATA_DIR = r'G:\xxx\train_data'
同时还要修改第38行的路径,改成绝对路径即可,否则也会报如下错误
ImportError: G:\xxx\DAMO-YOLO\configs\damoyolo_tinynasL20_T.py doesn't contains class named 'Config'
到这里基本上就能在windows端使用单卡运行起来了