AVL树是自平衡二叉搜索树,通过旋转来保持树的平衡。平衡因子是左子树高度减去右子树高度的差,当平衡因子的绝对值大于1时,需要进行旋转操作来使树重新保持平衡。 以下是一个示例代码,实现了AVL树中的插入和删除操作,并通过旋转实现了平衡维护。
class AVLTree:
class Node:
def __init__(self, val):
self.val = val
self.height = 1
self.left = None
self.right = None
def __init__(self):
self.root = None
def height(self, node):
if node is None:
return 0
return node.height
def balance_factor(self, node):
if node is None:
return 0
return self.height(node.left) - self.height(node.right)
def left_rotate(self, node):
right_child = node.right
node.right = right_child.left
right_child.left = node
node.height = 1 + max(self.height(node.left), self.height(node.right))
right_child.height = 1 + max(self.height(right_child.left), self.height(right_child.right))
return right_child
def right_rotate(self, node):
left_child = node.left
node.left = left_child.right
left_child.right = node
node.height = 1 + max(self.height(node.left), self.height(node.right))
left_child.height = 1 + max(self.height(left_child.left), self.height(left_child.right))
return left_child
def insert(self, node, val):
if node is None:
return self.Node(val)
if val < node.val:
node.left = self.insert(node.left, val)
elif val > node.val:
node.right = self.insert(node.right, val)
node.height = 1 + max(self.height(node.left), self.height(node.right))
balance_factor = self.balance_factor(node)
if balance_factor > 1:
上一篇:AVL排序为什么不是原地排序?