中序遍历 AVL 树可通过递归方式实现。以下是一个示例代码:
class AVLNode:
def __init__(self, key):
self.key = key
self.left = None
self.right = None
self.height = 1
class AVLTree:
def __init__(self):
self.root = None
def height(self, node):
if node is None:
return 0
else:
return node.height
def balance_factor(self, root):
if root is None:
return 0
return self.height(root.left) - self.height(root.right)
def left_rotate(self, root):
y = root.right
T2 = y.left
y.left = root
root.right = T2
root.height = 1 + max(self.height(root.left), self.height(root.right))
y.height = 1 + max(self.height(y.left), self.height(y.right))
return y
def right_rotate(self, root):
y = root.left
T3 = y.right
y.right = root
root.left = T3
root.height = 1 + max(self.height(root.left), self.height(root.right))
y.height = 1 + max(self.height(y.left), self.height(y.right))
return y
def insert(self, root, key):
if root is None:
return AVLNode(key)
elif key < root.key:
root.left = self.insert(root.left, key)
else:
root.right = self.insert(root.right, key)
root.height = 1 + max(self.height(root.left), self.height(root.right))
balance = self.balance_factor(root)
if balance > 1 and key < root.left.key:
return self.right_rotate(root)
if balance < -1 and key > root.right.key:
return self.left_rotate(root)
if balance > 1 and key > root.left.key:
root.left = self.left_rotate(root.left)
return self.right_rotate(root)
if balance < -1 and key < root.right.key:
root.right = self.right_rotate(root.right)
return self.left_rotate(root)
return root
def in_order_traversal(self,
上一篇:AVL树中分割后子树的大小
下一篇:AVL树左旋转