代码随想录训练营第42天|01背包问题、LeetCode 416. 分割等和子集
创始人
2024-03-22 08:04:33
0

参考

代码随想录

01背包问题

01背包是在M件物品取出若干件放在空间为W的背包里,每件物品的体积为W1,W2至Wn,与之相对应的价值为P1,P2至Pn。01背包是背包问题中最简单的问题。01背包的约束条件是给定几种物品,每种物品有且只有一个,并且有权值和体积两个属性。在01背包问题中,因为每种物品只有一个,对于每个物品只需要考虑选与不选两种情况。如果不选择将其放入背包中,则不需要处理。如果选择将其放入背包中,由于不清楚之前放入的物品占据了多大的空间,需要枚举将这个物品放入背包后可能占据背包空间的所有情况。

上面的体积也可能换成是重量,本质上是一样的。

在这里插入图片描述

二维dp数组01背包

  1. 确定dp数组及其下标的含义
    这里将dp数组定义为二维,dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
    在这里插入图片描述
  2. 确定递推公式
    可以有两个方向推出dp[i][j]:
  • 不能放入物品i:dp[i][j] = d[i-1][j],这种情况说明不能放入物品i,放入物品i会超出背包的最大承载重量,所以背包承载重量为j时价值最大总和与不放入物品i时相等。
  • 能放入物品i:dp[i][j] = dp[i - 1][j - weight[i]] + value[i],这里放入物品i后的背包承载重量为j,因此放入物品i之前的背包的承载重量是j-weight[i],再加上该物品的价值就得到了此递推公式

综合起来,要保证价值总和最大,因此递推公式为:

dp[i][j] = max(dp[i][i-1], dp[i - 1][j - weight[i]] + value[i])
  1. dp数组初始化
    当背包承载重量j为0时,背包里不能放任何物品,因此价值总和为0。
    由递推公式可以看出,dp[i][j]和dp[i-1][j]有关系,因此i=0是需要进行初始化,i=0意味着放入物品0。所以当背包承载重量j < weigft[0]时,dp[0][j] = 0;当j >= weight[0]时,dp[0][j] = value[0].
for (int j = 0 ; j < weight[0]; j++) {  // 当然这一步,如果把dp数组预先初始化为0了,这一步就可以省略dp[0][j] = 0;
}
// 正序遍历
for (int j = weight[0]; j <= bagweight; j++) {dp[0][j] = value[0];
}

在这里插入图片描述

  1. 确定遍历顺序
    可以先遍历背包,也可以先遍历物品。
    先遍历物品:
// weight数组的大小 就是物品个数
for(int i = 1; i < weight.size(); i++) { // 遍历物品for(int j = 0; j <= bagweight; j++) { // 遍历背包容量if (j < weight[i]) dp[i][j] = dp[i - 1][j]; else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);}
}

先遍历背包:

// weight数组的大小 就是物品个数
for(int j = 0; j <= bagweight; j++) { // 遍历背包容量for(int i = 1; i < weight.size(); i++) { // 遍历物品if (j < weight[i]) dp[i][j] = dp[i - 1][j];else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);}
}
  1. 举例推导dp数组
    在这里插入图片描述
    整体代码实现如下:
void test_2_wei_bag_problem1() {vector weight = {1, 3, 4};vector value = {15, 20, 30};int bagweight = 4;// 二维数组vector> dp(weight.size(), vector(bagweight + 1, 0));// 初始化for (int j = weight[0]; j <= bagweight; j++) {dp[0][j] = value[0];}// weight数组的大小 就是物品个数for(int i = 1; i < weight.size(); i++) { // 遍历物品for(int j = 0; j <= bagweight; j++) { // 遍历背包容量if (j < weight[i]) dp[i][j] = dp[i - 1][j];else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);}}cout << dp[weight.size() - 1][bagweight] << endl;
}int main() {test_2_wei_bag_problem1();
}

一维dp数组(滚动数组)01背包

对于背包问题其实状态都是可以压缩的。

在使用二维数组的时候,递推公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

其实可以发现如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i]);

与其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组了,只用dp[j](一维数组,也可以理解是一个滚动数组)。

  1. 确定dp数组及其下标的含义
    在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。
  2. 确定递推公式
    dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值,所以递推公式为:
dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
  1. dp数组初始化
    当j = 0时,背包里不能放任何物品,所以最大价值总和为0,即dp[0] = 0。dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。
  2. 确定遍历顺序
for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}
}
  1. 举例推导dp数组
    在这里插入图片描述
    完整的代码实现如下:
void test_1_wei_bag_problem() {vector weight = {1, 3, 4};vector value = {15, 20, 30};int bagWeight = 4;// 初始化vector dp(bagWeight + 1, 0);for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}}cout << dp[bagWeight] << endl;
}int main() {test_1_wei_bag_problem();
}

LeetCode 416.分割等和子集

只有确定了如下四点,才能把01背包问题套到本题上来。

  • 背包的体积为sum / 2
  • 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
  • 背包中每一个元素是不可重复放入。

以上分析完,我们就可以套用01背包,来解决这个问题了。

  1. 确定dp数组及其下标的含义
    本题中每一个元素的数值即是重量,也是价值。01背包套到本题,dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]。
  2. 确定递推公式
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
  1. dp数组初始化
    从dp[j]的定义来看,首先dp[0]一定是0。如果如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。
  2. 确定遍历顺序
for(int i = 0; i < nums.size(); i++) {for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);}
}
  1. 举例推导dp数组
    在这里插入图片描述
    完整的代码实现如下:

class Solution {
public:bool canPartition(vector& nums) {int sum = 0;// dp[i]中的i表示背包内总和// 题目中说:每个数组中的元素不会超过 100,数组的大小不会超过 200// 总和不会大于20000,背包最大只需要其中一半,所以10001大小就可以了vector dp(10001, 0);for (int i = 0; i < nums.size(); i++) {sum += nums[i];}// 也可以使用库函数一步求和// int sum = accumulate(nums.begin(), nums.end(), 0);if (sum % 2 == 1) return false;int target = sum / 2;// 开始 01背包for(int i = 0; i < nums.size(); i++) {for(int j = target; j >= nums[i]; j--) { // 每一个元素一定是不可重复放入,所以从大到小遍历dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);}}// 集合中的元素正好可以凑成总和targetif (dp[target] == target) return true;return false;}
};

相关内容

热门资讯

AWSECS:访问外部网络时出... 如果您在AWS ECS中部署了应用程序,并且该应用程序需要访问外部网络,但是无法正常访问,可能是因为...
银河麒麟V10SP1高级服务器... 银河麒麟高级服务器操作系统简介: 银河麒麟高级服务器操作系统V10是针对企业级关键业务...
【NI Multisim 14...   目录 序言 一、工具栏 🍊1.“标准”工具栏 🍊 2.视图工具...
不能访问光猫的的管理页面 光猫是现代家庭宽带网络的重要组成部分,它可以提供高速稳定的网络连接。但是,有时候我们会遇到不能访问光...
AWSElasticBeans... 在Dockerfile中手动配置nginx反向代理。例如,在Dockerfile中添加以下代码:FR...
月入8000+的steam搬砖... 大家好,我是阿阳 今天要给大家介绍的是 steam 游戏搬砖项目,目前...
​ToDesk 远程工具安装及... 目录 前言 ToDesk 优势 ToDesk 下载安装 ToDesk 功能展示 文件传输 设备链接 ...
北信源内网安全管理卸载 北信源内网安全管理是一款网络安全管理软件,主要用于保护内网安全。在日常使用过程中,卸载该软件是一种常...
AWS管理控制台菜单和权限 要在AWS管理控制台中创建菜单和权限,您可以使用AWS Identity and Access Ma...
AWR报告解读 WORKLOAD REPOSITORY PDB report (PDB snapshots) AW...