在AWS Personalize中,exploration_item_age_cut_off是一个用于控制个性化推荐模型中item exploration的超参数,它规定了算法是否可以查看和推荐较旧的items。通常情况下,该超参数取值较小,以确保推荐系统推荐的物品时尽可能新鲜。以下是一个示例代码,展示如何设置该超参数:
create_solution_version_response = personalize.create_solution_version(
solutionArn=solution_arn,
trainingMode='FULL',
)
solution_version_arn = create_solution_version_response['solutionVersionArn']
# 等待模型训练完成
while True:
status = personalize.describe_solution_version(
solutionVersionArn=solution_version_arn
)["solutionVersion"]["status"]
print("Training status: {}".format(status))
if status == "ACTIVE" or status == "CREATE FAILED":
break
time.sleep(60)
# 设置超参数
update_solution = {
"explorationConfig": {
"explorationItemAgeCutOff": "30" # 将超参数exploration_item_age_cut_off设置为30天
}
}
personalize.update_solution(solutionArn=solution_arn, solution=update_solution)