LeetCode刷题复盘笔记—一文搞懂完全背包之139. 单词拆分问题(动态规划系列第十六篇)
创始人
2024-03-26 01:38:40
0

今日主要总结一下动态规划完全背包的一道题目,139. 单词拆分

题目:139. 单词拆分

Leetcode题目地址
题目描述:
给你一个字符串 s 和一个字符串列表 wordDict 作为字典。请你判断是否可以利用字典中出现的单词拼接出 s 。

注意:不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。

示例 1:

输入: s = “leetcode”, wordDict = [“leet”, “code”]
输出: true
解释: 返回 true 因为 “leetcode” 可以由 “leet” 和 “code” 拼接成。

示例 2:

输入: s = “applepenapple”, wordDict = [“apple”, “pen”]
输出: true
解释: 返回 true 因为 “applepenapple” 可以由 “apple” “pen” “apple” 拼接成。
注意,你可以重复使用字典中的单词。

示例 3:

输入: s = “catsandog”, wordDict = [“cats”, “dog”, “sand”, “and”, “cat”]
输出: false

提示:

1 <= s.length <= 300
1 <= wordDict.length <= 1000
1 <= wordDict[i].length <= 20
s 和 wordDict[i] 仅有小写英文字母组成
wordDict 中的所有字符串 互不相同

本题重难点

这道题的难点还是把问题转化成熟悉的背包问题!!!

题目可以这样转化:单词就是物品,字符串s就是背包,单词能否组成字符串s,就是问物品能不能把背包装满。拆分时可以重复使用字典中的单词,说明就是一个完全背包!

动规五部曲分析如下:

  1. 确定dp数组以及下标的含义
    dp[i] : 字符串长度为i的话,dp[i]为true,表示可以拆分为一个或多个在字典中出现的单词。

  2. 确定递推公式
    如果确定dp[j] 是true,且 [j, i] 这个区间的子串出现在字典里,那么dp[i]一定是true。(j < i )。
    所以递推公式是 if([j, i] 这个区间的子串出现在字典里 && dp[j]是true) 那么 dp[i] = true。

  3. dp数组如何初始化
    从递归公式中可以看出,dp[i] 的状态依靠 dp[j]是否为true,那么dp[0]就是递归的根基,dp[0]一定要为true,否则递归下去后面都都是false了。
    那么dp[0]有没有意义呢?
    dp[0]表示如果字符串为空的话,说明出现在字典里。
    但题目中说了“给定一个非空字符串 s” 所以测试数据中不会出现i为0的情况,那么dp[0]初始为true完全就是为了推导公式。
    下标非0的dp[i]初始化为false,只要没有被覆盖说明都是不可拆分为一个或多个在字典中出现的单词。

  4. 确定遍历顺序
    题目中说是拆分为一个或多个在字典中出现的单词,所以这是完全背包。
    还要讨论两层for循环的前后循序。
    如果求组合数就是外层for循环遍历物品,内层for遍历背包。
    如果求排列数就是外层for遍历背包,内层for循环遍历物品。
    而本题其实我们求的是排列数,为什么呢。 拿 s = “applepenapple”, wordDict = [“apple”, “pen”] 举例。
    “apple”, “pen” 是物品,那么我们要求 物品的组合一定是 “apple” + “pen” + “apple” 才能组成 “applepenapple”。
    “apple” + “apple” + “pen” 或者 “pen” + “apple” + “apple” 是不可以的,那么我们就是强调物品之间顺序。
    所以说,本题一定是 先遍历 背包,在遍历物品。

  5. 举例推导dp[i]

以输入: s = “leetcode”, wordDict = [“leet”, “code”]为例,dp状态如图:
在这里插入图片描述

C++代码

class Solution {
public:bool wordBreak(string s, vector& wordDict) {unordered_setwordSet(wordDict.begin(), wordDict.end());vectordp(s.size() + 1, false);dp[0] = true;for(int i = 1; i <= s.size(); i++){for(int j = 0; j < i; j++){string substr = s.substr(j, i - j);if(wordSet.find(substr) != wordSet.end() && dp[j] == true){dp[i] = true;}}}return dp[s.size()];}
};

总结

动态规划
英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。
动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的

对于动态规划问题,可以拆解为如下五步曲,这五步都搞清楚了,才能说把动态规划真的掌握了!

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

这篇文章主要总结了一些动态规划解决139. 单词拆分问题,依然是使用动规五部曲,做每道动态规划题目这五步都要弄清楚才能更清楚的理解题目!

判断如何初始化重要一点就是看dp是取之前状态最小值还是最大值,如果最小值就大概率INT_MAX,最大值就大概率0。

在求装满背包有几种方案的时候,认清遍历顺序是非常关键的。

  • 如果求组合数就是外层for循环遍历物品,内层for遍历背包。(也就是0-1背包一维dp数组常用写法)

  • 如果求排列数就是外层for遍历背包,内层for循环遍历物品。

本题还是强调单词之间的顺序,所以说,本题一定是 先遍历 背包,在遍历物品。

欢迎大家关注本人公众号:编程复盘与思考随笔

(关注后可以免费获得本人在csdn发布的资源源码)

相关内容

热门资讯

AWSECS:访问外部网络时出... 如果您在AWS ECS中部署了应用程序,并且该应用程序需要访问外部网络,但是无法正常访问,可能是因为...
银河麒麟V10SP1高级服务器... 银河麒麟高级服务器操作系统简介: 银河麒麟高级服务器操作系统V10是针对企业级关键业务...
【NI Multisim 14...   目录 序言 一、工具栏 🍊1.“标准”工具栏 🍊 2.视图工具...
不能访问光猫的的管理页面 光猫是现代家庭宽带网络的重要组成部分,它可以提供高速稳定的网络连接。但是,有时候我们会遇到不能访问光...
AWSElasticBeans... 在Dockerfile中手动配置nginx反向代理。例如,在Dockerfile中添加以下代码:FR...
Android|无法访问或保存... 这个问题可能是由于权限设置不正确导致的。您需要在应用程序清单文件中添加以下代码来请求适当的权限:此外...
月入8000+的steam搬砖... 大家好,我是阿阳 今天要给大家介绍的是 steam 游戏搬砖项目,目前...
​ToDesk 远程工具安装及... 目录 前言 ToDesk 优势 ToDesk 下载安装 ToDesk 功能展示 文件传输 设备链接 ...
北信源内网安全管理卸载 北信源内网安全管理是一款网络安全管理软件,主要用于保护内网安全。在日常使用过程中,卸载该软件是一种常...
AWS管理控制台菜单和权限 要在AWS管理控制台中创建菜单和权限,您可以使用AWS Identity and Access Ma...