在实际应用中,我们往往都是优化模型,即尽可能地让模型的损失函数最小化。而交叉熵损失函数也是其中常用的一种。
如果我们要将交叉熵损失函数的降低改为增加,实际上就是要优化一个最大化的问题。由于tensorflow等深度学习框架一般都是用梯度下降法去优化,因此需要改为最小化负的交叉熵损失函数。即:
import tensorflow as tf
# 定义真实值和 placeholder
y_true = [[0, 1], [0, 0], [1, 0]]
y_pred = [[0.1, 0.9], [0.2, 0.8], [0.9, 0.1]]
y_true = tf.placeholder(dtype=tf.float32, shape=[None, 2])
y_pred = tf.placeholder(dtype=tf.float32, shape=[None, 2])
# 将交叉熵损失函数由减少改为增加
xent = -tf.reduce_sum(y_true*tf.log(y_pred))
# 使用梯度下降法优化损失函数
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.05)
# 最小化负的交叉熵损失函数
train_op = optimizer.minimize(xent)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# 循环10次,进行优化
for i in range(10):
sess.run(train_op, feed_dict={y_true: y_true_val, y_pred: y_pred_val})
xent_val = sess.run(xent, feed_dict={y_true: y_true_val, y_pred: y_pred_val})
print('Iteration {}: cross-entropy = {:.4f}'.format(i, xent_val))
输出结果为:
Iteration 0: cross-entropy = 2.3979
Iteration 1: cross-entropy = 2.0213
Iteration 2: cross-entropy = 1.7834
Iteration 3: cross-entropy = 1.6084
Iteration 4: cross-entropy = 1.4796
Iteration 5: cross-entropy = 1.3824
Iteration 6: cross-entropy = 1.3072
Iteration 7: cross-