保存和加载Keras子类模型可以使用以下步骤:
import tensorflow as tf
from tensorflow import keras
class MyModel(keras.Model):
def __init__(self):
super(MyModel, self).__init__()
self.dense = keras.layers.Dense(64, activation='relu')
self.dropout = keras.layers.Dropout(0.5)
self.output_layer = keras.layers.Dense(10, activation='softmax')
def call(self, inputs):
x = self.dense(inputs)
x = self.dropout(x)
return self.output_layer(x)
model = MyModel()
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5, batch_size=32)
model.save('my_model.h5')
loaded_model = keras.models.load_model('my_model.h5', custom_objects={'MyModel': MyModel})
可以看到在加载模型的时候,需要传入custom_objects
参数,将自定义模型类传递给它。
predictions = loaded_model.predict(x_test)
这样就可以成功保存和加载Keras子类模型了。
上一篇:保存和加载Keras模型
下一篇:保存和加载库存