数据分析 | Pandas 200道练习题,每日10道题,学完必成大神(5)
创始人
2024-04-01 18:56:02
0

文章目录

    • 前期准备
    • 1. 将create Time列设置为索引
    • 2. 生成一个和df长度相同的随机数DataFrame
    • 3. 将上一题生成的DataFrame与df合并
    • 4. 生成的新的一列new值为salary列减去之前生成的随机数列
    • 5. 检查数据中是否含有空值
    • 6. 将salary类型转换成浮点数
    • 7. 计算salary 大于10000的次数
    • 8. 查看education共有几种学历
    • 9. 查看每种学历出现的次数
    • 10. 提取salary与new的和大于60000的最后3行

本章的10道题仍然是基于前章的文件,主要学习了有设置索引、合并两个DataFrame对象、更改数据类型,不同列之间的运算,统计一列不同值得个数以及不同值分别出现得次数,还有如何灵活的运用布尔值运算。

前期准备

##  前期准备
本章的十道题与前面的试题相连接,数据集用的同一个数据集一些操作也是基于上一个练习的本次导包多导入了一个绘图的包,在这里我们只是简单的应用,后面会有详细的讲解用法
```python
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt 

数据集没有的可以私信我,也可以直接去我的资源里面找

df = pd.read_excel('data1.xlsx')
def fun(x):a,b = x.split('-')a = int(a.strip('k'))*1000b = int(b.strip('k'))*1000return int((a+b)/2)
df['salary'] = df['salary'].apply(fun)

1. 将create Time列设置为索引

set_index() 将DataFrame的某一列快速设置成索引(index)默认会删除原来的列同样也可以是使用drop=False不删除原来的列

df.set_index('createTime')

在这里插入图片描述

2. 生成一个和df长度相同的随机数DataFrame

随机数的范围1-1000
随机生成

df1=pd.DataFrame(pd.Series(np.random.randint(1,1000,df.shape[0])))

3. 将上一题生成的DataFrame与df合并

其实这个题本质上就是合并两个DataFrame对象

  • 使用merge
    这个merge多用于内连接和外连接
pd.merge(df,df1) 
  • 使用concat
df = pd.concat([df,df1],axis=1)
df
  • 使用join
df.join(df1)

两个合并之后的情况
在这里插入图片描述

4. 生成的新的一列new值为salary列减去之前生成的随机数列

df['new'] = df['salary'].astype('int') - df['rom']
df

在这里插入图片描述

5. 检查数据中是否含有空值

isnull()对所有的元素判断是否是空值
在这里插入图片描述
any() 当序列中有一个True值时返回True否则返回False
all() 当序列中所有的值为True值时返回True否则返回False

df.isnull().values.any()

在这里插入图片描述

6. 将salary类型转换成浮点数

类型转换
这种方式并不会修改原数据,会返回一个修改后的新对象

df['salary'].astype('float') # 方式1
df['salary'].astype(np.float64) # 方式2

在这里插入图片描述

7. 计算salary 大于10000的次数

其实这个里面用了一个布尔值计算的等价计算

True代表1 False代表0

sum(df['salary']>10000)

8. 查看education共有几种学历

统计一列中的不同值得个数

# 方式1
df.education.nunique()
# 方式2
df['education'].nunique()

在这里插入图片描述

9. 查看每种学历出现的次数

统计每一种值出现得次数

df['education'].value_counts()  # 方式1df.education.value_counts()     # 方式2

在这里插入图片描述

10. 提取salary与new的和大于60000的最后3行

推荐使用前两种

# 提取salary与new的和大于60000的最后3行
# 方式1
df[df['salary']+df['new']>60000].tail(3)
# 方式2
df[df['salary']+df['new']>60000][-3:]# 方式3 
df2 = df[['salary','new']]
rowsums = df2.apply(np.sum,axis=1)
res = df.iloc[np.where(rowsums>60000)[0][-3:],:]
res

在这里插入图片描述

期待您的关注


相关内容

热门资讯

银河麒麟V10SP1高级服务器... 银河麒麟高级服务器操作系统简介: 银河麒麟高级服务器操作系统V10是针对企业级关键业务...
【NI Multisim 14...   目录 序言 一、工具栏 🍊1.“标准”工具栏 🍊 2.视图工具...
AWSECS:访问外部网络时出... 如果您在AWS ECS中部署了应用程序,并且该应用程序需要访问外部网络,但是无法正常访问,可能是因为...
不能访问光猫的的管理页面 光猫是现代家庭宽带网络的重要组成部分,它可以提供高速稳定的网络连接。但是,有时候我们会遇到不能访问光...
AWSElasticBeans... 在Dockerfile中手动配置nginx反向代理。例如,在Dockerfile中添加以下代码:FR...
Android|无法访问或保存... 这个问题可能是由于权限设置不正确导致的。您需要在应用程序清单文件中添加以下代码来请求适当的权限:此外...
月入8000+的steam搬砖... 大家好,我是阿阳 今天要给大家介绍的是 steam 游戏搬砖项目,目前...
​ToDesk 远程工具安装及... 目录 前言 ToDesk 优势 ToDesk 下载安装 ToDesk 功能展示 文件传输 设备链接 ...
北信源内网安全管理卸载 北信源内网安全管理是一款网络安全管理软件,主要用于保护内网安全。在日常使用过程中,卸载该软件是一种常...
AWS管理控制台菜单和权限 要在AWS管理控制台中创建菜单和权限,您可以使用AWS Identity and Access Ma...