这种错误通常是由于目标大小与模型的输出不匹配导致的。可以在处理标签时对其进行one-hot编码,以确保匹配模型的输出大小。下面是对标签进行one-hot编码以解决此问题的示例代码:
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import BertModel, BertTokenizer
class MyDataset(Dataset):
def __init__(self, texts, labels, tokenizer, max_len):
self.texts = texts
self.labels = labels
self.tokenizer = tokenizer
self.max_len = max_len
def __len__(self):
return len(self.texts)
def __getitem__(self, index):
text = self.texts[index]
label = self.labels[index]
# 对标签进行one-hot编码
label = torch.eye(2)[label].squeeze(0)
encoding = self.tokenizer.encode_plus(
text,
add_special_tokens=True,
max_length=self.max_len,
padding='max_length',
truncation=True,
return_attention_mask=True,
return_tensors='pt'
)
return {
'text': text,
'input_ids': encoding['input_ids'].flatten(),
'attention_mask': encoding['attention_mask'].flatten(),
'label': label
}
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased')
texts = ['This is the first sentence', 'This is the second sentence']
labels = [0, 1]
dataset = MyDataset(texts, labels, tokenizer, max_len=10)
dataloader = DataLoader(dataset, batch_size=2)
for batch in dataloader:
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
label = batch['label']
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
last_hidden_state = outputs.last_hidden_state
# 注:这里假设模型输出的是二分类问题的结果,因此使用sigmoid函数处理
logits = torch.sigmoid(last_hidden_state[:, 0, :])
loss_fn = torch.nn.BCELoss()
loss = loss_fn(logits, label)
print(loss)
在上面的示例中,我们将标签进行one-hot编码,并使用BCELoss作为损失函数计算总
上一篇:bert分类模型微调使用
下一篇:Bert分类器模型的量化