神经网络的万能逼近定理
创始人
2024-04-16 04:56:37
0

这是我见过的讨论神经网络万有逼近问题的最好的文章。在文章中,给出了最清晰,简洁的构造性证明。揭示了它的本质。

三十年前,我们接触到神经网络的万有逼近问题。发表了几篇文章。这些文章把神经网络能力的来历、优点、缺点,都已讲清楚了。此博文中介绍的论文是 1990 年 Le Page 组织的一个会议的 Invited paper.

  1. 一维阶梯函数的线性组合能逼近任何连续一维连续函数。

  2. Sigmoidal 函数可以逼近阶梯函数。因此,一维Sigmoidal函数的线性组合能逼近任何连续函数。

  3. 把坐标轴在R^{n}中沿各个方向旋转 (如同CT原理),在每一射线上,构造Sigmoidal函数的线性组合,就可以逼近R^{n}中任何连续函数。

  4. 优点:用一个简单到不能再简单的函数的线性组合和叠合可以逼近任何连续函数。

  5. 缺点:天下没有免费的午餐。

  6. 为了R^{n} 中函数达到精度1/N。需要识别 O(n^{N}) 个参数。这是无法承受的。

  7. 无论用阶梯函数还是Sigmoidal 函数,关键是利用其跳跃部分。因此,在用梯度法时,经常会发生导数不可控。

  8. 上述两个致命缺点长期阻碍了神经网络的发展和应用。深度学习就是围绕着这些问题来做的。通俗的讲,是实现神经网络逼近能力的技术。

这是第一篇用构造性方法证明神经网络逼近能力的论文.

转载本文请联系原作者获取授权,同时请注明本文来自陈天平科学网博客。
链接地址:http://blog.sciencenet.cn/blog-3377239-1129327.html

相关内容

热门资讯

保存时出现了1个错误,导致这篇... 当保存文章时出现错误时,可以通过以下步骤解决问题:查看错误信息:查看错误提示信息可以帮助我们了解具体...
汇川伺服电机位置控制模式参数配... 1. 基本控制参数设置 1)设置位置控制模式   2)绝对值位置线性模...
不能访问光猫的的管理页面 光猫是现代家庭宽带网络的重要组成部分,它可以提供高速稳定的网络连接。但是,有时候我们会遇到不能访问光...
表格中数据未显示 当表格中的数据未显示时,可能是由于以下几个原因导致的:HTML代码问题:检查表格的HTML代码是否正...
本地主机上的图像未显示 问题描述:在本地主机上显示图像时,图像未能正常显示。解决方法:以下是一些可能的解决方法,具体取决于问...
表格列调整大小出现问题 问题描述:表格列调整大小出现问题,无法正常调整列宽。解决方法:检查表格的布局方式是否正确。确保表格使...
不一致的条件格式 要解决不一致的条件格式问题,可以按照以下步骤进行:确定条件格式的规则:首先,需要明确条件格式的规则是...
Android|无法访问或保存... 这个问题可能是由于权限设置不正确导致的。您需要在应用程序清单文件中添加以下代码来请求适当的权限:此外...
【NI Multisim 14...   目录 序言 一、工具栏 🍊1.“标准”工具栏 🍊 2.视图工具...
银河麒麟V10SP1高级服务器... 银河麒麟高级服务器操作系统简介: 银河麒麟高级服务器操作系统V10是针对企业级关键业务...