锐角三角函数 | 任意角三角函数 | |
---|---|---|
正弦 | sinA=ac\sin A=\dfrac acsinA=ca | sinθ=yr\sin \theta=\dfrac yrsinθ=ry |
余弦 | cosA=bc\cos A=\dfrac bccosA=cb | cosθ=xr\cos \theta=\dfrac xrcosθ=rx |
正切 | tanA=ab\tan A=\dfrac abtanA=ba | tanθ=yx\tan \theta=\dfrac yxtanθ=xy |
余切 | cotA=ba\cot A=\dfrac bacotA=ab | cotθ=xy\cot \theta=\dfrac xycotθ=yx |
正割 | secA=cb\sec A=\dfrac cbsecA=bc | secθ=rx\sec \theta=\dfrac rxsecθ=xr |
余割 | cscA=ca\csc A=\dfrac cacscA=ac | cscθ=ry\csc \theta=\dfrac rycscθ=yr |
sin(2kπ+α)=sinα(k∈Z)\sin(2k\pi+\alpha)=\sin \alpha \qquad (k\in Z)sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)\cos(2k\pi+\alpha)=\cos \alpha \qquad (k\in Z)cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)\tan(2k\pi+\alpha)=\tan \alpha \qquad (k\in Z)tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)\cot(2k\pi+\alpha)=\cot \alpha \qquad (k\in Z)cot(2kπ+α)=cotα(k∈Z)
sin(π+α)=−sinα\sin(\pi+\alpha)=-\sin \alphasin(π+α)=−sinα
cos(π+α)=−cosα\cos(\pi+\alpha)=-\cos \alphacos(π+α)=−cosα
tan(π+α)=tanα\tan(\pi+\alpha)=\tan \alphatan(π+α)=tanα
cot(π+α)=cotα\cot(\pi+\alpha)=\cot \alphacot(π+α)=cotα
sin(−α)=−sinα\sin(-\alpha)=-\sin \alphasin(−α)=−sinα
cos(−α)=cosα\cos(-\alpha)=\cos \alphacos(−α)=cosα
tan(−α)=−tanα\tan(-\alpha)=-\tan \alphatan(−α)=−tanα
cot(−α)=−cotα\cot(-\alpha)=-\cot \alphacot(−α)=−cotα
sin(π−α)=sinα\sin(\pi-\alpha)=\sin \alphasin(π−α)=sinα
cos(π−α)=−cosα\cos(\pi-\alpha)=-\cos \alphacos(π−α)=−cosα
tan(π−α)=−tanα\tan(\pi-\alpha)=-\tan \alphatan(π−α)=−tanα
cot(π−α)=−cotα\cot(\pi-\alpha)=-\cot \alphacot(π−α)=−cotα
sin(2π−α)=−sinα\sin(2\pi-\alpha)=-\sin \alphasin(2π−α)=−sinα
cos(2π−α)=cosα\cos(2\pi-\alpha)=\cos \alphacos(2π−α)=cosα
tan(2π−α)=−tanα\tan(2\pi-\alpha)=-\tan \alphatan(2π−α)=−tanα
cot(2π−α)=−cotα\cot(2\pi-\alpha)=-\cot \alphacot(2π−α)=−cotα
sin(π2+α)=cosαcos(π2+α)=−sinαtan(π2+α)=−cotαcot(π2+α)=−tanα\sin(\dfrac{\pi}{2}+\alpha)=\cos \alpha \quad \cos(\dfrac{\pi}{2}+\alpha)=-\sin \alpha \quad \tan(\dfrac{\pi}{2}+\alpha)=-\cot \alpha \quad \cot(\dfrac{\pi}{2}+\alpha)=-\tan \alphasin(2π+α)=cosαcos(2π+α)=−sinαtan(2π+α)=−cotαcot(2π+α)=−tanα
sin(π2−α)=cosαcos(π2−α)=sinαtan(π2−α)=cotαcot(π2−α)=tanα\sin(\dfrac{\pi}{2}-\alpha)=\cos \alpha \quad \cos(\dfrac{\pi}{2}-\alpha)=\sin \alpha \quad \tan(\dfrac{\pi}{2}-\alpha)=\cot \alpha \quad \cot(\dfrac{\pi}{2}-\alpha)=\tan \alphasin(2π−α)=cosαcos(2π−α)=sinαtan(2π−α)=cotαcot(2π−α)=tanα
sin(3π2+α)=−cosαcos(3π2+α)=sinαtan(3π2+α)=−cotαcot(3π2+α)=−tanα\sin(\dfrac{3\pi}{2}+\alpha)=-\cos \alpha \quad \cos(\dfrac{3\pi}{2}+\alpha)=\sin \alpha \quad \tan(\dfrac{3\pi}{2}+\alpha)=-\cot \alpha \quad \cot(\dfrac{3\pi}{2}+\alpha)=-\tan \alphasin(23π+α)=−cosαcos(23π+α)=sinαtan(23π+α)=−cotαcot(23π+α)=−tanα
sin(3π2−α)=−cosαcos(3π2−α)=−sinαtan(3π2−α)=cotαcot(3π2−α)=tanα\sin(\dfrac{3\pi}{2}-\alpha)=-\cos \alpha \quad \cos(\dfrac{3\pi}{2}-\alpha)=-\sin \alpha \quad \tan(\dfrac{3\pi}{2}-\alpha)=\cot \alpha \quad \cot(\dfrac{3\pi}{2}-\alpha)=\tan \alphasin(23π−α)=−cosαcos(23π−α)=−sinαtan(23π−α)=cotαcot(23π−α)=tanα
口诀:奇变偶不变,符号看象限。
\qquad如果加的常数是π2\dfrac{\pi}{2}2π的奇数倍,则函数名称要变,正弦边余弦,余弦变正弦,正切变余切,余切变正切。是偶数倍则不变。
\qquad因为α\alphaα是任意角,在记公式的时候,我们不妨将α\alphaα看作第一象限的角,那么此时sinα,cosαtanα,cotα\sin \alpha,\cos \alpha\tan \alpha,\cot \alphasinα,cosαtanα,cotα都为正。然后根据原函数的角度所在的象限来判断新函数的符号。
\qquad举例:对于sin(3π2+α)\sin(\dfrac{3\pi}{2}+\alpha)sin(23π+α),首先3π2\dfrac{3\pi}{2}23π是π2\dfrac{\pi}{2}2π的三倍,所以要变函数名;又因为当α\alphaα的终边在第一象限的时候3π2+α\dfrac{3\pi}{2}+\alpha23π+α在第四象限,而正弦函数在第四象限值为负,所以sin(3π2+α)=−cosα\sin(\dfrac{3\pi}{2}+\alpha)=-\cos \alphasin(23π+α)=−cosα。
sin2α=2sinαcosα\sin 2\alpha=2\sin \alpha\cos \alphasin2α=2sinαcosα
cos2α=cos2α−sin2α=1−2sinα=2cos2α−1\cos 2\alpha=\cos^2\alpha-\sin^2\alpha=1-2\sin \alpha=2\cos^2\alpha-1cos2α=cos2α−sin2α=1−2sinα=2cos2α−1
tan2α=2tanα1−tan2α\tan 2\alpha=\dfrac{2\tan \alpha}{1-\tan^2\alpha}tan2α=1−tan2α2tanα
sin2α=12(1−cos2α)\sin^2\alpha=\dfrac 12(1-\cos2\alpha)sin2α=21(1−cos2α)
cos2α=12(1+cos2α)\cos^2\alpha=\dfrac 12(1+\cos2\alpha)cos2α=21(1+cos2α)
sinα2=±1−cosα2\sin\dfrac{\alpha}{2}=\pm\sqrt{\dfrac{1-\cos \alpha}{2}}sin2α=±21−cosα
cosα2=±1+cosα2\cos\dfrac{\alpha}{2}=\pm\sqrt{\dfrac{1+\cos \alpha}{2}}cos2α=±21+cosα
tanα2=sinα1+cosα=1−cosαsinα=±1−cosα1+cosα\tan\dfrac{\alpha}{2}=\dfrac{\sin \alpha}{1+\cos \alpha}=\dfrac{1-\cos \alpha}{\sin \alpha}=\pm\sqrt{\dfrac{1-\cos \alpha}{1+\cos \alpha}}tan2α=1+cosαsinα=sinα1−cosα=±1+cosα1−cosα
正负由α2\dfrac{\alpha}{2}2α所在象限决定。因为带根号的数一定是非负数,所以可以根据原函数在对应象限的正负来判断新函数的正负。
sin(α±β)=sinαcosβ±cosαsinβ\sin(\alpha\pm\beta)=\sin \alpha\cos \beta\pm\cos \alpha\sin \betasin(α±β)=sinαcosβ±cosαsinβ
cos(α±β)=cosαcosβ∓sinαsinβ\cos(\alpha\pm\beta)=\cos \alpha\cos \beta\mp\sin \alpha\sin \betacos(α±β)=cosαcosβ∓sinαsinβ
tan(α±β)=tanα±tanβ1∓tanαtanβ\tan(\alpha\pm\beta)=\dfrac{\tan \alpha\pm\tan\beta}{1\mp\tan \alpha\tan \beta}tan(α±β)=1∓tanαtanβtanα±tanβ
sinαcosβ=12[sin(α+β)+sin(α+β)]\sin \alpha\cos \beta=\dfrac 12[\sin(\alpha+\beta)+\sin(\alpha+\beta)]sinαcosβ=21[sin(α+β)+sin(α+β)]
cosαsinβ=12[sin(α+β)−sin(α−β)]\cos \alpha\sin \beta=\dfrac 12[\sin(\alpha+\beta)-\sin(\alpha-\beta)]cosαsinβ=21[sin(α+β)−sin(α−β)]
cosαcosβ=12[cos(α+β)+cos(α−β)]\cos \alpha\cos \beta=\dfrac 12[\cos(\alpha+\beta)+\cos(\alpha-\beta)]cosαcosβ=21[cos(α+β)+cos(α−β)]
sinαsinβ=12[cos(α−β)−cos(α+β)]\sin \alpha\sin \beta=\dfrac 12[\cos(\alpha-\beta)-\cos(\alpha+\beta)]sinαsinβ=21[cos(α−β)−cos(α+β)]
sinα+sinβ=2sinα+β2cosα−β2\sin \alpha+\sin \beta=2\sin\dfrac{\alpha+\beta}{2}\cos\dfrac{\alpha-\beta}{2}sinα+sinβ=2sin2α+βcos2α−β
sinα−sinβ=2cosα+β2sinα−β2\sin \alpha-\sin \beta=2\cos\dfrac{\alpha+\beta}{2}\sin\dfrac{\alpha-\beta}{2}sinα−sinβ=2cos2α+βsin2α−β
cosα+cosβ=2cosα+β2cosα−β2\cos \alpha+\cos \beta=2\cos\dfrac{\alpha+\beta}{2}\cos\dfrac{\alpha-\beta}{2}cosα+cosβ=2cos2α+βcos2α−β
cosα−cosβ=−2sinα+β2sinα−β2\cos \alpha-\cos \beta=-2\sin\dfrac{\alpha+\beta}{2}\sin\dfrac{\alpha-\beta}{2}cosα−cosβ=−2sin2α+βsin2α−β
口诀
正加正,正在前;余加余,余并肩。
正减正,余在前;余减余,负正弦。
sinα=2tanα21+tan2α2\sin \alpha=\dfrac{2\tan \frac{\alpha}{2}}{1+\tan^2\frac{\alpha}{2}}sinα=1+tan22α2tan2α
cosα=1−tan2α21+tan2α2\cos \alpha=\dfrac{1-\tan^2\frac{\alpha}{2}}{1+\tan^2 \frac{\alpha}{2}}cosα=1+tan22α1−tan22α
tanα=2tanα21−tan2α2\tan \alpha=\dfrac{2\tan\frac{\alpha}{2}}{1-\tan^2\frac{\alpha}{2}}tanα=1−tan22α2tan2α