【C++】vector用法简单模拟实现
创始人
2024-05-06 20:31:27
0

在这里插入图片描述

文章目录

  • 1.vector的介绍及使用
    • 1.1 vector基本概念
    • 1.2 vector的使用
      • 1.2.1 vector的定义 (构造函数)
      • 1.2.2 vector的迭代器使用
      • 1.2.3 vector 增删查改
      • 1.2.4 vector 迭代器失效问题(重点)
      • 1.2.5 vector 空间增长问题
  • 2. vector的模拟实现
    • 2.1 SGI版vector实现示意图
    • 2.2 具体实现代码


1.vector的介绍及使用

vector的文档介绍(包含函数接口使用)

1.1 vector基本概念

vector是表示可变大小数组的序列容器

就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素
进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自
动处理

功能:

  • vector数据结构和数组非常相似,也称为单端数组

vector与普通数组区别:

  • 不同之处在于数组是静态空间,而vector可以动态扩展

1.2 vector的使用

vector学习时一定要学会查看文档:>vector的文档介绍<
vector在实际中非常的重要,在实际中我们熟悉常
见的接口就可以,下面列出了哪些接口是要重点掌握的

1.2.1 vector的定义 (构造函数)

(constructor)构造函数声明接口说明
vector()(重点)无参构造
vector(size_type n, const value_type& val = value_type())构造并初始化n个val
vector (const vector& x); (重点)拷贝构造
vector (InputIterator first, InputIterator last);使用迭代器进行初始化构造
#include void printVector(vector& v) {for (vector::iterator it = v.begin(); it != v.end(); it++){cout << *it << " ";}cout << endl;
}
int main() {vector v1; //无参构造for (int i = 0; i < 10; i++){v1.push_back(i);}printVector(v1);vector v2(v1.begin(), v1.end());//使用迭代器进行初始化构造printVector(v2);vector v3(10, 100); //构造并初始化10个100printVector(v3);vector v4(v3);//拷贝构造printVector(v4);return 0;
}

小提醒:vector的多种构造方式比较多,灵活运用即可


1.2.2 vector的迭代器使用

在上面的构造函数中,我们可以看到其中有一个接口是用迭代器构造的,这里有一个新的概念,什么是迭代器?

简单来讲,迭代器和 C++ 的 指针 非常类似,它可以是需要的任意类型,通过迭代器可以指向容器中的某个元素,如果需要,还可以对该元素进行读/写操作。

注意:迭代器的行为像指针,也就是说可以像用指针一样使用迭代器,但它不一定是指针(比如list的迭代器),具体是什么,后续学习其他容器模拟实现即可理解!!!

iterator的使用接口说明
begin + end(重点)获取第一个数据位置的iterator/const_iterator, 获取最后一个数据的下一个位置 的iterator/const_iterator
rbegin + rend获取最后一个数据位置的reverse_iterator,获取第一个数据前一个位置的
#include 
#include 
using namespace std;
int main()
{vector v(10, 1);//构造10个1std::vector::iterator it = v.begin();//获取v的开始的迭代器,类型是std::vector::iterator//auto it1 = v.begin();//类型太长,可以使用autostd::vector::iterator end = v.end();//获取v的结尾的迭代器while (it != end){cout << *it << " "; //*解引用之后,就可以拿到数据,跟指针*p的操作一样++it;//让迭代器往后移一位,跟指针的++p类似}cout << endl;return 0;
}
image-20230103165613311

小提醒:迭代器在STL中非常好用,它屏蔽了底层的细节,保证了用户使用的一致性,而且在后续学习更多容器的时候,迭代器的用法几乎一样


1.2.3 vector 增删查改

vector增删查改接口说明
push_back(重点)尾插
pop_back (重点)尾删
find查找。(注意这个是算法模块实现,不是vector的成员接口)
insert在position之前插入val
erase删除position位置的数据
swap()交换两个vector的数据空间
operator[] (重点)像数组一样访问
clear();删除容器中所有元素

插入和删除示例:

#include 
void printVector(vector& v) {for (vector::iterator it = v.begin(); it != v.end(); it++) {cout << *it << " ";}cout << endl;
}int main() {//插入和删除vector v1;//尾插v1.push_back(10);v1.push_back(20);v1.push_back(30);v1.push_back(40);v1.push_back(50);printVector(v1);//尾删v1.pop_back();printVector(v1);//插入v1.insert(v1.begin(), 100);printVector(v1);v1.insert(v1.begin(), 2, 1000);printVector(v1);//删除v1.erase(v1.begin());printVector(v1);//清空v1.erase(v1.begin(), v1.end());v1.clear();printVector(v1);return 0;
}

总结:

  • 尾插 — push_back
  • 尾删 — pop_back
  • 插入 — insert (位置迭代器)
  • 删除 — erase (位置迭代器)
  • 清空 — clear
image-20230103194707003

数据存取示例:

#include 
int main()
{vectorv1;for (int i = 0; i < 10; i++){v1.push_back(i);}for (int i = 0; i < v1.size(); i++){cout << v1[i] << " ";}cout << endl;for (int i = 0; i < v1.size(); i++){cout << v1.at(i) << " ";}cout << endl;cout << "v1的第一个元素为: " << v1.front() << endl;cout << "v1的最后一个元素为: " << v1.back() << endl;return 0;
}

总结:

  • 除了用迭代器获取vector容器中元素,[ ]和at也可以
  • front返回容器第一个元素
  • back返回容器最后一个元素
image-20230103194733562

赋值重载示例:

#include void printVector(vector& v) {for (vector::iterator it = v.begin(); it != v.end(); it++) {cout << *it << " ";}cout << endl;
}int main()
{vector v1; //无参构造for (int i = 0; i < 10; i++){v1.push_back(i);}printVector(v1);vectorv2;v2 = v1;//赋值重载printVector(v2);vectorv3;v3.assign(v1.begin(), v1.end());printVector(v3);vectorv4;v4.assign(10, 100);printVector(v4);return 0;
}

总结: vector赋值方式比较简单,使用operator=或者assign都可以

image-20230103194636926

1.2.4 vector 迭代器失效问题(重点)

迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了
封装
,比如:vector的迭代器就是原生态指针T* 。因此迭代器失效,实际就是迭代器底层对应指针所指向的
空间被销毁了
,而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器,
程序可能会崩溃)

对于vector可能会导致其迭代器失效的操作有:

  1. 会引起其底层空间改变的操作,都有可能是迭代器失效,比如:resize、reserve、insert、assign、
    push_back等。

  2. 指定位置元素的删除操作--erase

迭代器失效解决办法:在使用前,对迭代器重新赋值即可

示例1

下面的程序运行会崩溃,原因就是因为底层空间发生改变导致迭代器失效

image-20230103195425780
#include 
using namespace std;
#include 
int main()
{vector v{ 1, 2, 3, 4, 5, 6 };auto it = v.begin();// 将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容// v.resize(100, 8);// reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变// v.reserve(100);// 插入元素期间,可能会引起扩容,而导致原空间被释放// v.insert(v.begin(), 0);// v.push_back(8);// 给vector重新赋值,可能会引起底层容量改变v.assign(100, 8);/*出错原因:以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉,而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的空间,而引起代码运行时崩溃。解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新赋值即可。*/while (it != v.end()){cout << *it << " ";++it;}cout << endl;return 0;
}

示例2

image-20230103195650059
#include 
using namespace std;
#include 
int main()
{int a[] = { 1, 2, 3, 4 };vector v(a, a + sizeof(a) / sizeof(int));// 使用find查找3所在位置的iteratorvector::iterator pos = find(v.begin(), v.end(), 3);// 删除pos位置的数据,导致pos迭代器失效。v.erase(pos);cout << *pos << endl; // 此处会导致非法访问return 0;
}

erase删除pos位置元素后,pos位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代
器不应该会失效,但是:如果pos刚好是最后一个元素,删完之后pos刚好是end的位置,而end位置是
没有元素的,那么pos就失效了。因此删除vector中任意位置上元素时,vs就认为该位置迭代器失效了。

注意:Linux下,g++编译器对迭代器失效的检测并不是非常严格,处理也没有vs下极端。

erase删除任意位置代码后,linux下迭代器并没有失效
因为空间还是原来的空间,后序元素往前搬移了,it的位置还是有效的 ,但是如果是删除最后一个元素Linux下也同样会失效

迭代器失效解决办法:在使用前,对迭代器重新赋值即可


1.2.5 vector 空间增长问题

容量空间接口说明
size获取数据个数
capacity获取容量大小
empty判断是否为空
resize(重点)改变vector的size
reserve (重点)改变vector的capacity
  • capacity的代码在vs和g++下分别运行会发现,vs下capacity是按1.5倍增长的,g++是按2倍增长的
    这个问题经常会考察,不要固化的认为,vector增容都是2倍,具体增长多少是根据具体的需求定义
    的。vs是PJ版本STL,g++是SGI版本STL。

  • reserve只负责开辟空间,如果确定知道需要用多少空间,reserve可以缓解vector增容的代价缺陷问
    题。

  • resize在开空间的同时还会进行初始化,影响size

// 测试vector的默认扩容机制
void TestVectorExpand()
{size_t sz;vector v;sz = v.capacity();cout << "making v grow:\n";for (int i = 0; i < 100; ++i){v.push_back(i);if (sz != v.capacity()){sz = v.capacity();cout << "capacity changed: " << sz << '\n';}}
}
vs:运行结果:vs下使用的STL基本是按照1.5倍方式扩容
making foo grow :
capacity changed : 1
capacity changed : 2
capacity changed : 3
capacity changed : 4
capacity changed : 6
capacity changed : 9
capacity changed : 13
capacity changed : 19
capacity changed : 28
capacity changed : 42
capacity changed : 63
capacity changed : 94
capacity changed : 141g++运行结果:linux下使用的STL基本是按照2倍方式扩容
making foo grow :
capacity changed : 1
capacity changed : 2
capacity changed : 4
capacity changed : 8
capacity changed : 16
capacity changed : 32
capacity changed : 64
capacity changed : 128
// 如果已经确定vector中要存储元素大概个数,可以提前将空间设置足够
// 就可以避免边插入边扩容导致效率低下的问题了
void TestVectorExpandOP()
{vector v;size_t sz = v.capacity();v.reserve(100); // 提前将容量设置好,可以避免一遍插入一遍扩容cout << "making bar grow:\n";for (int i = 0; i < 100; ++i){v.push_back(i);if (sz != v.capacity()){sz = v.capacity();cout << "capacity changed: " << sz << '\n';}}
}

总结:

  • 判断是否为空 — empty

  • 返回元素个数 — size

  • 返回容器容量 — capacity

  • 重新指定大小 — resize(减少vector在动态扩展容量时的扩展次数)

动态扩展:

  • 并不是在原空间之后续接新空间,而是找更大的内存空间,然后将原数据拷贝新空间,释放原空间

image-20230103200655469


2. vector的模拟实现

2.1 SGI版vector实现示意图

vector的实现版本也有不少,我们这次实现的对象是相对来说比较简单的SGI 版的vector

SGI版实现vector的示意图

image-20230103202027412

image-20230103202103483


2.2 具体实现代码

#pragma once 
#include 
#include 
using namespace std;//为了和标准库里的vector不冲突,建议用命名空间封装起来
namespace hdm
{template class vector{public:// vector的迭代器是一个原生指针typedef T* iterator;typedef const T* const_iterator;iterator begin(){return _start;}iterator end(){return _finish;}const_iterator begin() const{return _start;}const_iterator end() const{return _finish;}//无参构造vector(): _start(nullptr), _finish(nullptr), _end_of_storage(nullptr){}vector(size_t n,const T& val=T()):_start(nullptr), _finish(nullptr), _end_of_storage(nullptr){reserve(n);while (n--){push_back(val);}}/** 理论上将,提供了vector(size_t n, const T& value = T())之后* vector(int n, const T& value = T())就不需要提供了,但是对于:* vector v(10, 5);* 编译器在编译时,认为T已经被实例化为int,而10和5编译器会默认其为int类型* 就不会走vector(size_t n, const T& value = T())这个构造方法,* 最终选择的是:vector(InputIterator first, InputIterator last)* 因为编译器觉得区间构造两个参数类型一致,因此编译器就会将InputIterator实例化为int* 但是10和5根本不是一个区间,编译时就报错了* 故需要增加该构造方法*/vector(int n, const T& val = T()):_start(nullptr), _finish(nullptr), _end_of_storage(nullptr){reserve(n);while (n--){push_back(val);}}// 若使用iterator做迭代器,会导致初始化的迭代器区间[first,last)只能是vector的迭代器// 重新声明迭代器,迭代器区间[first,last)可以是任意容器的迭代器template vector(InputIterator first, InputIterator last){while (first != last){push_back(*first);++first;}}//拷贝构造//传统写法//vector(const vector& v)//	:_start(nullptr)//	, _finish(nullptr)//	, _end_of_storage(nullptr)//{//	reserve(v.capacity());//	auto it = v.begin();//	auto it1 = begin();//	while (it != v.end())//	{//		*it1++ = *it++;//	}//	_finish = it1;//}//拷贝构造//现代写法vector(const vector& v):_start(nullptr), _finish(nullptr), _end_of_storage(nullptr){vector tmp(v.begin(), v.end());swap(tmp);}//赋值重载//现代写法vector& operator=(vector tmp){swap(tmp);return *this;}/// vector的修改操作void push_back(const T& val){if (_finish == _end_of_storage){//空间满了就2倍扩容,size_t newcapacity = capacity() == 0 ? 4 : capacity() * 2;reserve(newcapacity);}*_finish = val;++_finish;}void pop_back(){erase(end() - 1);}iterator insert(iterator pos,const T& x){assert(pos >= _start &&pos <= _finish);if (_finish == _end_of_storage){size_t newcapacity = capacity() == 0 ? 4 : capacity() * 2;reserve(newcapacity);}auto cur = end();while (cur>pos){*cur = *(cur - 1);--cur;}*pos = x;++_finish;return pos;}iterator erase(iterator pos){assert(pos >= _start && pos < _finish && pos!=nullptr);auto cur = pos;while (cur < _finish - 1){*cur = *(cur + 1);++cur;}--_finish;return pos;}void swap(vector & v){std::swap(_start, v._start);std::swap(_finish, v._finish);std::swap(_end_of_storage, v._end_of_storage);}//// 容量相关void reserve(size_t n){if (n > capacity()){size_t oldsize = size();T* tmp = new T[n];if (size() != 0){for (size_t i = 0; i < oldsize; i++){tmp[i] = _start[i];//这种赋值,即使在vector这样的深拷贝中也不会出现问题}					   //因为它在这种情况下它会调用赋值重载//这种写法在深一层的拷贝就会出错,比如vector二维数组/*memcpy(tmp, _start, size()*sizeof(T));*/delete[] _start;}_start = tmp;_finish = _start + oldsize;_end_of_storage = _start + n;}}void resize(size_t n,const T& x=T()){//容量不够先扩容if (n > capacity()){reserve(n);}for (size_t i = size(); i < n; ++i){_start[i] = x;}_finish = _start + n;}size_t capacity()  const{return _end_of_storage - _start;}size_t size() const{return _finish - _start;}bool empty(){return _finish == _start;}///// 元素访问T& operator[](size_t pos){assert(pos < size());return _start[pos];}const T& operator[](size_t pos) const {assert(pos < size());return _start[pos];}T& front(){return *_start;}const T& front() const{return *_start;}T& back(){return *(_finish - 1);}const T& back() const {return *(_finish - 1);}~vector(){delete[] _start;_start = _finish = _end_of_storage = nullptr;}private:T* _start; //容量空间的首地址T* _finish;  // 指向有效数据的尾T* _end_of_storage;  //容量空间的尾地址};/// //// 对模拟实现的vector进行严格测试void TestVector1(){hdm::vector v1;hdm::vector v2(10, 5);int array[] = { 1, 2, 3, 4, 5 };hdm::vector v3(array, array + sizeof(array) / sizeof(array[0]));hdm::vector v4(v3);for (size_t i = 0; i < v2.size(); ++i){cout << v2[i] << " ";}cout << endl;auto it = v3.begin();while (it != v3.end()){cout << *it << " ";++it;}cout << endl;for (auto e : v4){cout << e << " ";}cout << endl;}void TestVector2(){hdm::vector v;v.push_back(1);v.push_back(2);v.push_back(3);v.push_back(4);v.push_back(5);cout << v.size() << endl;cout << v.capacity() << endl;cout << v.front() << endl;cout << v.back() << endl;cout << v[0] << endl;for (auto e : v){cout << e << " ";}cout << endl;v.pop_back();v.pop_back();for (auto e : v){cout << e << " ";}cout << endl;v.insert(v.begin(), 0);for (auto e : v){cout << e << " ";}cout << endl;v.erase(v.begin() + 1);for (auto e : v){cout << e << " ";}cout << endl;}
}

测试示例一

image-20230104135354501

测试示例二

image-20230104135437157


相关内容

热门资讯

【NI Multisim 14...   目录 序言 一、工具栏 🍊1.“标准”工具栏 🍊 2.视图工具...
银河麒麟V10SP1高级服务器... 银河麒麟高级服务器操作系统简介: 银河麒麟高级服务器操作系统V10是针对企业级关键业务...
不能访问光猫的的管理页面 光猫是现代家庭宽带网络的重要组成部分,它可以提供高速稳定的网络连接。但是,有时候我们会遇到不能访问光...
AWSECS:访问外部网络时出... 如果您在AWS ECS中部署了应用程序,并且该应用程序需要访问外部网络,但是无法正常访问,可能是因为...
Android|无法访问或保存... 这个问题可能是由于权限设置不正确导致的。您需要在应用程序清单文件中添加以下代码来请求适当的权限:此外...
AWSElasticBeans... 在Dockerfile中手动配置nginx反向代理。例如,在Dockerfile中添加以下代码:FR...
北信源内网安全管理卸载 北信源内网安全管理是一款网络安全管理软件,主要用于保护内网安全。在日常使用过程中,卸载该软件是一种常...
AsusVivobook无法开... 首先,我们可以尝试重置BIOS(Basic Input/Output System)来解决这个问题。...
月入8000+的steam搬砖... 大家好,我是阿阳 今天要给大家介绍的是 steam 游戏搬砖项目,目前...
​ToDesk 远程工具安装及... 目录 前言 ToDesk 优势 ToDesk 下载安装 ToDesk 功能展示 文件传输 设备链接 ...