2/3考试总结
创始人
2024-05-23 08:21:08
0

7:50–8:10
读题,T1估计是个数据结构,T2是个 dp ,T3 第一眼看上去像是个 剪枝 dfs 。
8:10–9:00
T2, n^3 是好做的,暴力 dp 即可。考虑怎么拓展,考虑有什么高级的形式可以简化 max 的形式,好像没有,那就先看看 dp 有没有什么性质。感觉是有决策单调性的,打一下表,发现没有,但是显然数据没这么强,数据分布整体几乎是凸的。暂时没有其他想法,但是利用凸性估计能骗不少分数,至少能过随机。
在 n ^ 3 基础上使用整体二分,就是 n ^ 2 log ,然后再加上 wqs 二分直接二分权值,就可以去掉一维 R ,做到 n log ^ 2 。
9:00–9:50
T1,先写暴力。然后考虑怎么拓展。对于 Q=1 貌似可以扫描线之类的,这里我忽略了一个条件导致遇到了困难,不知道怎么做。
9:50–10:50
T3,对于 10 分可以暴力 dfs ,但是直接枚举权值显然没有优化空间。考虑 dp ,考虑能否枚举点的权值 dp ,这样复杂度是爆炸的。然后突然发现答案关于每种质因子是独立的,而整除的限制可以转化为因子指数的大小关系,只需要枚举指数就可以了,这是 log 的,于是一下子可写了, nlog^4 暴力 dp ,然后 Vlog 处理答案,配合特殊点可以拿到 60 分。
10:50–11:30
T3,考虑 V 特别大怎么做,发现大质数是没用的,那么只要考虑小于根号的答案就可以了,问题在于如何计算有大质数的答案,不会做。
11:30–12:20 回看 T1,T2 没什么想法。

回顾反思

T1:
这一题是比较可惜的,考试的时候忽略了一个条件,导致非常不可做,不然起码能拿一些莫队的分的。
对于正解,要求若干区间询问的答案,由于相关答案具有可加性,可以考虑扫描线,枚举右端点 r,,线段树上下标 l 处维护 l 到 r 的答案,每次考虑 r 加进来新的贡献维护。这道题要求一个区间询问内所有子区间的答案和,本是个 n ^ 2 级别的问题,放到扫描线上,可以在线段树上维护:1.答案的历史累加值,即把之前所有 r 的贡献累加起来。2.当前 r 新增的贡献,枚举到下一个 r 时将该贡献复制到历史累加里去。也就是当前线段树维护的要新增的贡献以及之前所有 r 的时刻线段树维护的要新增的贡献的历史累加。那么每次询问查询历史累加值就可以了。又因为强制在线,那么把原本离线的扫描线改成主席树存下所有 r 的时刻对应线段树的信息就可以了。
T2:
主要是分析性质。
对相邻一大一小两数策略的优劣性讨论,发现直接将原数组做前缀 max 后再做 dp 不影响答案。那么原来变化的 max 就变成了常量,可以直接斜率优化。
二是考虑分 R 组的上界,列出合并其中相邻两段减少段数后会变劣的条件,发现要使满足条件,总段数不超过 log 级别。于是复杂度直接降下来暴力 dp 就行了。

T3:
基本的思路差不多。
一个点是要知道 Powerful Numbers ,其为不存在指数为 1 的质因子的数。对于原题,大于 sqrt V 的质因子指数最多为 1 ,而 Powerful Numbers 的答案通过一些计算计算又可以包含所有值域内的数,那么就可以转而只考虑 Powerful Numbers,从而避开大质数的问题,可以直接枚举小因子了。
有结论,直接暴力枚举质因子指数得到 Powerful Numbers ,复杂度是 V\sqrt VV​ 的。
那么我们枚举 Powerful Numbers,设某个数为 S,钦定原题中 a1=lcm(a2,a3...an)a_1=lcm(a_2,a_3...a_n)a1​=lcm(a2​,a3​...an​) ,那么对于这道题来说,得到的 a 的乘积必然是 Powerful Numbers ,且任何一个 Powerful Numbers 都对应原树的一些方案,且任何 Powerful Numbers 的方案不重,任何 Powerful Numbers的任何倍数对应的方案也不重,且能覆盖所有值域内的数,那么对于每个 S ,得到其贡献,再由一定倍数关系就可以得到所有数的答案了。

相关内容

热门资讯

【NI Multisim 14...   目录 序言 一、工具栏 🍊1.“标准”工具栏 🍊 2.视图工具...
银河麒麟V10SP1高级服务器... 银河麒麟高级服务器操作系统简介: 银河麒麟高级服务器操作系统V10是针对企业级关键业务...
不能访问光猫的的管理页面 光猫是现代家庭宽带网络的重要组成部分,它可以提供高速稳定的网络连接。但是,有时候我们会遇到不能访问光...
AWSECS:访问外部网络时出... 如果您在AWS ECS中部署了应用程序,并且该应用程序需要访问外部网络,但是无法正常访问,可能是因为...
Android|无法访问或保存... 这个问题可能是由于权限设置不正确导致的。您需要在应用程序清单文件中添加以下代码来请求适当的权限:此外...
北信源内网安全管理卸载 北信源内网安全管理是一款网络安全管理软件,主要用于保护内网安全。在日常使用过程中,卸载该软件是一种常...
AWSElasticBeans... 在Dockerfile中手动配置nginx反向代理。例如,在Dockerfile中添加以下代码:FR...
AsusVivobook无法开... 首先,我们可以尝试重置BIOS(Basic Input/Output System)来解决这个问题。...
ASM贪吃蛇游戏-解决错误的问... 要解决ASM贪吃蛇游戏中的错误问题,你可以按照以下步骤进行:首先,确定错误的具体表现和问题所在。在贪...
月入8000+的steam搬砖... 大家好,我是阿阳 今天要给大家介绍的是 steam 游戏搬砖项目,目前...