(1分钟速通面试) 矩阵分解相关内容
创始人
2024-05-23 21:05:04
0

矩阵分解算法--总结

QR分解 LU分解

本篇博客总结一下QR分解和LU分解,这些都是矩阵加速的操作,在slam里面还算是比较常用的内容,这个地方在isam的部分出现过。(当然isam也是一个坑,想要出点创新成果的话 可能是不太现实的 短期来讲 哈哈哈)

假定我们能把矩阵A写成下列两个矩阵相乘的形式:A=LU,其中L为下三角矩阵,U为上三角矩阵。这样我们可以把线性方程组Ax= b写成Ax= (LU)x = L(Ux) = b。令Ux = y,则原线性方程组Ax = b可首先求解向量y 使Ly = b,然后求解 Ux = y,从而达到求解线性方程组Ax= b的目的。(非常熟悉的 数值分析课上学的LU分解的形式)

编辑

添加图片注释,不超过 140 字(可选)

LD(LT)的形式,就是把上面的LU分解中拆出来一个倍数矩阵,然后我觉得没啥必要。在这里也放上。

定理:若对称矩阵A的各阶顺序主子式不为零时,则A可以唯一分解为A= LDLT,这里。

编辑

添加图片注释,不超过 140 字(可选)

下面是cholesky分解 读作乔列斯基分解, 栓Q 这些英文名字要是不会读的话 你在讲相关内容的时候就会显得很尴尬 哈哈哈 笑死。

Cholesky分解是一种分解矩阵的方法, 在线形代数中有重要的应用。Cholesky分解把矩阵分解为一个下三角矩阵以及它的共轭转置矩阵的乘积(那实数界来类比的话,此分解就好像求平方根)。与一般的矩阵分解求解方程的方法比较,Cholesky分解效率很高。

对于上面这段定义,让我认知扩充了。上学期学的数值分析里面我知道是转置矩阵,但是没想到是共轭转置矩阵。也就是说一开始我是不知道他还有个共轭的关系在里面的。行了,现在知道了。可能上学期学的内容都是定义在实数域上面的,那么共轭的概念就逐渐被弱化了。现在记住了,原来是共轭转置矩阵。心里默念三遍 hhh

QR分解

矩阵的QR分解是指,可以将矩阵A分级成一个正交阵Q和一个上三角矩阵R的乘积。实际中,QR分解经常被用来解线性最小二乘问题。

编辑

添加图片注释,不超过 140 字(可选)

上面这个就是QR分解,感觉这些的话 会用就行,知道谁的速度快,然后什么情况下的矩阵适合什么样的方法即可。

SVD分解

编辑切换为居中

添加图片注释,不超过 140 字(可选)

说白了,这里的奇异值就是特征值的含义。那么这个矩阵的话,按照我本科的学习思路来说,就是由特征向量和特征值来共同组成的。就是那一套,莱姆大E - A的行列式,求特征值,特征向量,然后就写出来。现在的话,对特征值也是有一定的理解了。特征值可以反应数据的离散情况,也反映了数据的分布 同时可能也反映了数据的趋势。好了,这个特征值的话还是很有用的。在机器学习的一个面试题里面,特征值大的方向,数据会越离散,反之数据会越集中。当然我们研究的话,应该是研究离散的,因为这样好区分。前面这句话主要针对分类来说,因为你的数据离散了,可区分性好了以后,那么我们做分类的效果才显著,这样的研究才有意义。

编辑切换为居中

添加图片注释,不超过 140 字(可选)

上面这幅图的话 主要说了广义逆矩阵的事情,为啥说是广义呢,因为平时我们定义的逆矩阵一定是一个方阵,这里不是方阵了,那么就称作是广义逆矩阵了。

编辑切换为居中

添加图片注释,不超过 140 字(可选)

本科的时候我们叫他乔丹分解,哈哈哈 就是aj的那个乔丹。笑死。

这个没啥好说的,就是jardon块的构造,这个也是根据特征值的次数来进行构造的。可能再看一看就能想起来相关内容了,所以这里省略。(主要是slam里面好像并不提及这个东西,反正我是没见过 hhh)

编辑

添加图片注释,不超过 140 字(可选)

这里有一个比较。笑死,LU分解最快了。

那在这里对矩阵的分解进行一个总结。也就是说平时我们在解方程组的时候,如果求逆,会加大计算量。我们这时会选择矩阵分解的方法来进行求逆的代替。然后进而求得方程的解。笑死 我想起来上学期的考试,在线LU分解 在线cholesky分解,直接写结果,真的非常方便。如果按照它们的定义一步步地计算的话,我估计最起码20分钟 在不算错的情况下。行了 本篇就讲到这里,这个矩阵分解的内容,opencv也进行了相应地包装。在这里的话不必过多赘述了。栓Q,本篇到此结束。

相关内容

热门资讯

保存时出现了1个错误,导致这篇... 当保存文章时出现错误时,可以通过以下步骤解决问题:查看错误信息:查看错误提示信息可以帮助我们了解具体...
汇川伺服电机位置控制模式参数配... 1. 基本控制参数设置 1)设置位置控制模式   2)绝对值位置线性模...
不能访问光猫的的管理页面 光猫是现代家庭宽带网络的重要组成部分,它可以提供高速稳定的网络连接。但是,有时候我们会遇到不能访问光...
表格中数据未显示 当表格中的数据未显示时,可能是由于以下几个原因导致的:HTML代码问题:检查表格的HTML代码是否正...
本地主机上的图像未显示 问题描述:在本地主机上显示图像时,图像未能正常显示。解决方法:以下是一些可能的解决方法,具体取决于问...
表格列调整大小出现问题 问题描述:表格列调整大小出现问题,无法正常调整列宽。解决方法:检查表格的布局方式是否正确。确保表格使...
不一致的条件格式 要解决不一致的条件格式问题,可以按照以下步骤进行:确定条件格式的规则:首先,需要明确条件格式的规则是...
Android|无法访问或保存... 这个问题可能是由于权限设置不正确导致的。您需要在应用程序清单文件中添加以下代码来请求适当的权限:此外...
【NI Multisim 14...   目录 序言 一、工具栏 🍊1.“标准”工具栏 🍊 2.视图工具...
银河麒麟V10SP1高级服务器... 银河麒麟高级服务器操作系统简介: 银河麒麟高级服务器操作系统V10是针对企业级关键业务...