every blog every motto: You can do more than you think.
https://blog.csdn.net/weixin_39190382?type=blog
可变形卷积记录
预印版:
Deformable Convolutional Networks v1
Deformable ConvNets v2: More Deformable, Better Results
发表版:
Deformable Convolutional Networks
我们知道,卷积核的目的是为了提取输入的特征,在传统卷积中卷积核通常是固定尺寸。这种卷积核存在的最大问题是对未知变化的适应性,泛化能力不强。
可以发现,可变形卷积在采样时更贴近物体的形状和尺寸,而标准卷积无法做到。
如前所述,可变形卷积在传统卷积的基础上增加了卷积核的方向向量,使得卷积核的形态更贴近物体,那么该过程是如何实现的?
注意: 特征图里面的值是浮点数,而坐标是整数。这里面需要涉及到类型转换,具体参考后面链接
参考9中,介绍了v2版本增加了对偏移增加权重,比较有意思,有兴趣的可以看下。
[1] Deformable Convolutional Networks v1
[2] Deformable ConvNets v2: More Deformable, Better Results
[3] Deformable Convolutional Networks
[4] https://blog.csdn.net/LEEANG121/article/details/104234927
[5] https://blog.csdn.net/scut_salmon/article/details/97050908
[6] https://blog.csdn.net/mykeylock/article/details/77746499
[7] https://blog.csdn.net/kevin_zhao_zl/article/details/89319756
[8] https://blog.csdn.net/jiangqixing0728/article/details/126269423
[9] https://www.jianshu.com/p/55ddeb498c65