解决不平衡的多类别分类问题可以采取以下方法之一:
from imblearn.over_sampling import SMOTE
from imblearn.under_sampling import RandomUnderSampler
from imblearn.pipeline import make_pipeline
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.svm import SVC
# 假设X为特征矩阵,y为目标变量
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 构建重采样流程
pipeline = make_pipeline(
SMOTE(sampling_strategy='auto', random_state=42),
RandomUnderSampler(sampling_strategy='auto', random_state=42),
SVC()
)
# 训练模型
pipeline.fit(X_train, y_train)
# 预测
y_pred = pipeline.predict(X_test)
# 打印分类报告
print(classification_report(y_test, y_pred))
class_weight
参数来实现。from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.svm import SVC
# 假设X为特征矩阵,y为目标变量
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 设置类别权重
class_weights = {'class_1': 1, 'class_2': 1, 'class_3': 10}
# 构建模型
model = SVC(class_weight=class_weights)
# 训练模型
model.fit(X_train, y_train)
# 预测
y_pred = model.predict(X_test)
# 打印分类报告
print(classification_report(y_test, y_pred))
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.ensemble import RandomForestClassifier
# 假设X为特征矩阵,y为目标变量
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 构建随机森林分类器
model = RandomForestClassifier(n_estimators=100, random_state=42)
# 训练模型
model.fit(X_train, y_train)
# 预测
y_pred = model.predict(X_test)
# 打印分类报告
print(classification_report(y_test, y_pred))
这些方法可以根据具体问题的需求进行调整和组合,以获得更好的分类结果。