在训练深度神经网络时,可能会遇到权重不平衡的问题,即某些权重值过大或过小,导致模型表现不佳。下面是一些解决不平衡TensorFlow模型权重的策略和代码示例:
# 使用截断正态分布初始化权重
weight_initializer = tf.truncated_normal_initializer(mean=0.0, stddev=0.1)
weight = tf.Variable(weight_initializer(shape=(input_dim, output_dim)))
# 在全连接层后应用批量归一化
input = tf.matmul(input, weight) + bias
batch_normalized = tf.layers.batch_normalization(input, training=is_training)
output = tf.nn.relu(batch_normalized)
# 添加L2正则化项
regularizer = tf.contrib.layers.l2_regularizer(scale=0.01)
weight = tf.Variable(weight_initializer(shape=(input_dim, output_dim)),
regularizer=regularizer)
# 使用指数衰减法调整学习率
global_step = tf.Variable(0, trainable=False)
learning_rate = tf.train.exponential_decay(learning_rate=0.1,
global_step=global_step,
decay_steps=1000,
decay_rate=0.96,
staircase=True)
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
这些方法可以单独或结合使用,具体选择取决于模型和数据集的特点。
下一篇:不平衡的推荐系统数据集