不平衡类别学习
创始人
2024-12-27 12:31:05
0

不平衡类别学习是指在分类问题中,不同类别的样本数量差异较大,导致模型在预测时对少数类别的预测效果较差的情况。以下是一些解决不平衡类别学习问题的常用方法和对应的代码示例:

  1. 过采样(Oversampling): 过采样方法通过增加少数类别样本数量来平衡数据集。常用的过采样方法有随机过采样(Random Oversampling)和SMOTE(Synthetic Minority Over-sampling Technique)。

    随机过采样示例代码:

    from imblearn.over_sampling import RandomOverSampler
    
    ros = RandomOverSampler(random_state=0)
    X_resampled, y_resampled = ros.fit_resample(X, y)
    

    SMOTE示例代码:

    from imblearn.over_sampling import SMOTE
    
    smote = SMOTE(random_state=0)
    X_resampled, y_resampled = smote.fit_resample(X, y)
    
  2. 欠采样(Undersampling): 欠采样方法通过减少多数类别样本数量来平衡数据集。常用的欠采样方法有随机欠采样(Random Undersampling)和NearMiss。

    随机欠采样示例代码:

    from imblearn.under_sampling import RandomUnderSampler
    
    rus = RandomUnderSampler(random_state=0)
    X_resampled, y_resampled = rus.fit_resample(X, y)
    

    NearMiss示例代码:

    from imblearn.under_sampling import NearMiss
    
    nm = NearMiss()
    X_resampled, y_resampled = nm.fit_resample(X, y)
    
  3. 集成方法: 集成方法通过组合多个分类器的预测结果来提高分类器的性能。常用的集成方法有Bagging和Boosting。

    Bagging示例代码:

    from imblearn.ensemble import BalancedBaggingClassifier
    from sklearn.tree import DecisionTreeClassifier
    
    bbc = BalancedBaggingClassifier(base_estimator=DecisionTreeClassifier(),
                                    sampling_strategy='auto',
                                    replacement=False,
                                    random_state=0)
    bbc.fit(X, y)
    y_pred = bbc.predict(X_test)
    

    Boosting示例代码:

    from imblearn.ensemble import BalancedRandomForestClassifier
    
    brf = BalancedRandomForestClassifier(random_state=0)
    brf.fit(X, y)
    y_pred = brf.predict(X_test)
    
  4. 样本权重调整(Sample Weighting): 样本权重调整方法通过为不同类别的样本分配不同的权重来平衡数据集。常用的样本权重调整方法有SMOTEENN和SMOTETomek。

    SMOTEENN示例代码:

    from imblearn.combine import SMOTEENN
    
    smote_enn = SMOTEENN(random_state=0)
    X_resampled, y_resampled = smote_enn.fit_resample(X, y)
    

    SMOTETomek示例代码:

    from imblearn.combine import SMOTETomek
    
    smote_tomek = SMOTETomek(random_state=0)
    X_resampled, y_resampled = smote_tomek.fit_resample(X, y)
    

这些方法可以根据具体的问题和数据集选择合适的方法进行使用。

相关内容

热门资讯

【NI Multisim 14...   目录 序言 一、工具栏 🍊1.“标准”工具栏 🍊 2.视图工具...
银河麒麟V10SP1高级服务器... 银河麒麟高级服务器操作系统简介: 银河麒麟高级服务器操作系统V10是针对企业级关键业务...
不能访问光猫的的管理页面 光猫是现代家庭宽带网络的重要组成部分,它可以提供高速稳定的网络连接。但是,有时候我们会遇到不能访问光...
AWSECS:访问外部网络时出... 如果您在AWS ECS中部署了应用程序,并且该应用程序需要访问外部网络,但是无法正常访问,可能是因为...
Android|无法访问或保存... 这个问题可能是由于权限设置不正确导致的。您需要在应用程序清单文件中添加以下代码来请求适当的权限:此外...
北信源内网安全管理卸载 北信源内网安全管理是一款网络安全管理软件,主要用于保护内网安全。在日常使用过程中,卸载该软件是一种常...
AWSElasticBeans... 在Dockerfile中手动配置nginx反向代理。例如,在Dockerfile中添加以下代码:FR...
AsusVivobook无法开... 首先,我们可以尝试重置BIOS(Basic Input/Output System)来解决这个问题。...
ASM贪吃蛇游戏-解决错误的问... 要解决ASM贪吃蛇游戏中的错误问题,你可以按照以下步骤进行:首先,确定错误的具体表现和问题所在。在贪...
月入8000+的steam搬砖... 大家好,我是阿阳 今天要给大家介绍的是 steam 游戏搬砖项目,目前...