二分法的思路很简单
class Solution {
public:int search(vector& nums, int target) {int left = 0;int right = nums.size() - 1;int middle = 0;while(left<=right){middle = left + (right - left) / 2;if(nums[middle]==target){return middle;}else if(nums[middle] < target){left = middle + 1;}else{right = middle - 1;}}return -1;}
};
和704题的比较如下
class Solution {
public:int searchInsert(vector& nums, int target) {int left = 0;int right = nums.size() - 1;int middle = 0;while(left <= right){middle = left + (right - left) / 2;if(nums[middle]==target){return middle;}else if(nums[middle] < target){left = middle + 1;}else{right = middle - 1;}}// 为何返回left的原因有以下几点// 我们需要返回一个正确的有序位置 而且计算到最后返回-1 的时候 已有三个参数 left,middle, rightreturn left;}
};
明确eft的原因从以下几点来看
核心就是当边界结束的时候left代表的是什么
class Solution {
private:int board(vector& nums, int target){int left = 0;int right = nums.size() - 1;int middle = 0;while(left<=right){middle = left + (right-left) / 2;if(nums[middle]left = middle + 1;}else{right = middle - 1;}}return left;// 返回左边界 即可以查找到的第一个数的位置}
public:vector searchRange(vector& nums, int target) {vector res={-1, -1};int start = board(nums, target);// 排除三种情况if(nums.size()==0 || nums[nums.size()-1] < target || nums[start]!=target){return res;}int end = board(nums, target+1)-1;res.clear();res.push_back(start);res.push_back(end);return res;}
};
说白了也是搜素 只是现在需要不保留小数的
那么搜素结束之后的right即是较小的那一个,另外将特殊情况排除一下
class Solution {
public:int mySqrt(int x) {int left = 0;int right = x;int middle = 0;if(x==0){return 0;}if(x==1){return 1;}while(left<=right){middle = left + (right-left) / 2;if(x/middle > middle){left = middle + 1;}else if(x/middle == middle){return middle;}else{right = middle - 1;}}return right;}
};
class Solution {
public:bool isPerfectSquare(int num) {int left = 1;int right = num;int middle = 0;if(num==1){return true;}while(left<=right){middle = left + (right-left) / 2;if(num/middle > middle){left = middle + 1;}else if((num%middle==0) && (num/middle==middle)){ // 来进行判断是否是平方return true;}else{right = middle - 1;}}return false;}
};