Dask提供了许多不需要使用Dashboard的监测内存使用情况的方法。以下是几种方法的示例:
Client.profile()
方法from dask.distributed import Client
client = Client()
# Collect profile data for a few seconds
prof_data = client.profile(start=0, duration=5)
# Print memory usage in bytes
print(prof_data["worker"]["memory"] / 1024**2)
Client.resource_monitor()
方法from dask.distributed import Client
client = Client()
# Enable resource monitoring on all workers
client.resource_monitor(duration="10s")
# Access the collected resource information
for host, data in client.resources().items():
print(f"Host: {host} | Memory (GB): {data['memory']['total'] / 1e9}")
Client.run()
方法from dask.distributed import Client
client = Client()
# Define function to check memory usage of each worker
def check_mem():
import psutil
mem = psutil.virtual_memory()
return mem.available / 1024**3
# Check memory usage on each worker
mem_usage = client.run(check_mem)
# Print results
for worker, mem in mem_usage.items():
print(f"Worker {worker}: {mem:.2f} GB")
以上方法不需要使用Dask的Dashboard即可检查Dask的内存使用情况。