不使用神经网络的预训练词向量进行文本分类
创始人
2024-12-29 08:31:09
0

以下是一个使用机器学习算法(不使用神经网络)和预训练词向量进行文本分类的示例代码:

import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import LinearSVC
from sklearn.metrics import accuracy_score

# 定义训练数据
train_texts = ["I love this movie", "This movie is great", "I don't like this movie"]
train_labels = [1, 1, 0]

# 定义测试数据
test_texts = ["I enjoy watching movies", "This movie is terrible"]

# 创建TF-IDF向量化器
vectorizer = TfidfVectorizer()

# 将训练文本转换为TF-IDF特征向量
train_features = vectorizer.fit_transform(train_texts)

# 将测试文本转换为TF-IDF特征向量
test_features = vectorizer.transform(test_texts)

# 创建支持向量机分类器
classifier = LinearSVC()

# 在训练数据上训练分类器
classifier.fit(train_features, train_labels)

# 对测试数据进行分类预测
predictions = classifier.predict(test_features)

# 打印预测结果
for text, label in zip(test_texts, predictions):
    print(f"Text: {text}  Label: {'Positive' if label == 1 else 'Negative'}")

在这个示例中,我们使用了sklearn库中的TfidfVectorizer来将文本数据转换为TF-IDF特征向量。然后,我们使用线性支持向量机(LinearSVC)作为分类器进行训练和预测。预测结果会打印出来,标记为正面或负面。

请注意,这个示例中并没有使用预训练的词向量模型,而是使用TF-IDF特征向量表示文本。这种方法在一些简单的文本分类任务上可能会有不错的效果,但对于更复杂的任务,使用预训练的词向量(例如Word2Vec、GloVe等)可能会更好。

相关内容

热门资讯

保存时出现了1个错误,导致这篇... 当保存文章时出现错误时,可以通过以下步骤解决问题:查看错误信息:查看错误提示信息可以帮助我们了解具体...
汇川伺服电机位置控制模式参数配... 1. 基本控制参数设置 1)设置位置控制模式   2)绝对值位置线性模...
不能访问光猫的的管理页面 光猫是现代家庭宽带网络的重要组成部分,它可以提供高速稳定的网络连接。但是,有时候我们会遇到不能访问光...
表格中数据未显示 当表格中的数据未显示时,可能是由于以下几个原因导致的:HTML代码问题:检查表格的HTML代码是否正...
本地主机上的图像未显示 问题描述:在本地主机上显示图像时,图像未能正常显示。解决方法:以下是一些可能的解决方法,具体取决于问...
表格列调整大小出现问题 问题描述:表格列调整大小出现问题,无法正常调整列宽。解决方法:检查表格的布局方式是否正确。确保表格使...
不一致的条件格式 要解决不一致的条件格式问题,可以按照以下步骤进行:确定条件格式的规则:首先,需要明确条件格式的规则是...
Android|无法访问或保存... 这个问题可能是由于权限设置不正确导致的。您需要在应用程序清单文件中添加以下代码来请求适当的权限:此外...
【NI Multisim 14...   目录 序言 一、工具栏 🍊1.“标准”工具栏 🍊 2.视图工具...
银河麒麟V10SP1高级服务器... 银河麒麟高级服务器操作系统简介: 银河麒麟高级服务器操作系统V10是针对企业级关键业务...