Feature interation—— Bridge、Fusion、Filte
创始人
2024-05-28 23:02:19
0

Feature interation(特征交互):物品不同模态的表示属于不同的语义空间,并且每个用户对模态也有不同的偏好。因此,多模态推荐系统(MRS)寻求融合和交互多模态特征来生成用户和物品的特征表示。特征交互可以实现各模态不同特征空间到公共空间的非线形转化,交互方法可大致分为:Bridge、Fusion、Filter三类(这三种方法从不同的角度实现交互,它们可以同时应用于同一个模型中)  。

多模态学习研究遵循的两个重要的准则:

互补性准则:一个模态的数据包含了其他模态数据所缺乏的信息。在多模态学习中可以利用多个模态之间的互补信息来增强模型,综合多模态的信息能够更加全面地表述目标对象。

一致性准则:学习过程中最大不同模态之间的一致性。一致性准则的出发点在于认为多模态数据共享某些一致的语义信息(从各个模态中抽取的语义表示共享某些一致性)。例如,从苹果的外观描述文本和苹果图像两种模态数据中抽取的语义特征应该有一定的一致性。

Bridge

该方法考虑了多模态信息,着重于捕捉用户和物品之间的相互关系。图神经网络的消息传递机制可以通过用户与项目之间的信息交换增强用户表示,进一步捕获用户对不同模态信息的偏好,具体可通过构建每种模态的user-item,item-item图,然后进行图卷积等操作实现,如图一所示。

图1:多模态消息传递

Fusion:

在多模态推荐场景中,用户和物品的多模态信息的种类和数量都非常庞大。因此,需要对不同的多模态信息进行融合,生成用于推荐任务的特征向量。与bridge相比,融合更关注物品内部的多模态关系,它旨在将各种偏好与模态相结合。注意力机制是目前使用最广泛的特征融合方法,可以根据不同权重和侧重点灵活的融合多模态信息。如图2所示。

图2:多模态特征融合

Filtration:

由于多模态数据不同于用户交互数据,它包含了许多与用户偏好无关的信息即噪声。噪声可以存在于交互图中,也可以存在于多模态特征本身,因此可以将Filtration分别嵌入到Bridge(物品级降噪)和Fusion(特征级降噪)中。例如,MEGCF关注多模态特征提取与用户兴趣建模之间的不匹配问题,该方法首先构建多模态用户-项目图,然后利用评论数据中的情感信息在GCN模块中进行细粒度权重近邻聚合来过滤信息。

图3:无品级降噪

注:本文只对特征交互进行说明,其他细节可以看 Multimodal Recommender Systems: A Survey

相关内容

热门资讯

【NI Multisim 14...   目录 序言 一、工具栏 🍊1.“标准”工具栏 🍊 2.视图工具...
银河麒麟V10SP1高级服务器... 银河麒麟高级服务器操作系统简介: 银河麒麟高级服务器操作系统V10是针对企业级关键业务...
不能访问光猫的的管理页面 光猫是现代家庭宽带网络的重要组成部分,它可以提供高速稳定的网络连接。但是,有时候我们会遇到不能访问光...
AWSECS:访问外部网络时出... 如果您在AWS ECS中部署了应用程序,并且该应用程序需要访问外部网络,但是无法正常访问,可能是因为...
Android|无法访问或保存... 这个问题可能是由于权限设置不正确导致的。您需要在应用程序清单文件中添加以下代码来请求适当的权限:此外...
北信源内网安全管理卸载 北信源内网安全管理是一款网络安全管理软件,主要用于保护内网安全。在日常使用过程中,卸载该软件是一种常...
AWSElasticBeans... 在Dockerfile中手动配置nginx反向代理。例如,在Dockerfile中添加以下代码:FR...
AsusVivobook无法开... 首先,我们可以尝试重置BIOS(Basic Input/Output System)来解决这个问题。...
ASM贪吃蛇游戏-解决错误的问... 要解决ASM贪吃蛇游戏中的错误问题,你可以按照以下步骤进行:首先,确定错误的具体表现和问题所在。在贪...
月入8000+的steam搬砖... 大家好,我是阿阳 今天要给大家介绍的是 steam 游戏搬砖项目,目前...