使用Python的pulp库可以解决此问题。具体步骤如下:
import pulp as pl
#定义变量和参数
m = 5 #员工数
n = 7 #班次数
x = pl.LpVariable.dicts('x', ((i,j) for i in range(m) for j in range(n)), cat='Binary')
f = [[1, 2, 3, 1, 2, 3, 4],
[2, 3, 1, 2, 3, 1, 2],
[3, 1, 2, 3, 1, 2, 3],
[1, 2, 3, 1, 2, 3, 4],
[2, 3, 1, 2, 3, 1, 2]]
#定义问题
prob = pl.LpProblem('schedule_optimization', pl.LpMinimize)
#添加约束条件
for i in range(m):
prob += pl.lpSum([x[(i,j)] for j in range(n)]) == 5 #每个员工一周总工作量为5
for j in range(n):
prob += pl.lpSum([x[(i,j)] for i in range(m)])