如何分辨on-policy和off-policy
创始人
2024-05-29 00:11:21
0

on-policy的定义:behavior policy和target-policy相同的是on-policy,不同的是off-policy。

behavior policy:采样数据的策略,影响的是采样出来s,a的分布。
target policy:就是被不断迭代修改的策略。

如果是基于深度的算法,那么非常好分辨:目标函数里面一定有s和a的期望,而计算梯度的时候使用了SGD,把一个采样作为了期望的值。但是这里面还有一个隐含的限制就是采样遵循的分布必须是s,a的分布。

因此分辨是否是on-policy的,只需要看目标函数。如果目标函数中s,a的分布和策略相关的,那么一定是on-policy的,如果是策略无关的,那么一定是off-policy的。

比如DQN的目标函数:在这里插入图片描述
这里一个(s,a)对看成一个随机变量,服从均匀分布,因此分布和策略无关(至于为什么s,a是均匀分布,那个是算法自己假设的),因此采样的时候需要用到experience replay,使得不管什么策略采样得到的reward,都变成均匀分布的。

因此用了experice replay之后,随便什么策略采样,虽然采样出来s,a服从那个策略的分布,但是经过experice replay之后还是变成了均匀分布。

比如PG:
在这里插入图片描述

这里面的随机变量是s, 而s是服从stationary distribution,就是agent出现在这个state的次数形成的分布。而这个分布和策略pi是相关的,因此是on-policy的(改变策略之后,agent出现的概率也改变了)

比如DPG:

在这里插入图片描述
这里面的分布d是一个常数(这是为了计算梯度方便),因此DPG中s,a的采样和策略无关,是off-policy的。

比如PPO:

在这里插入图片描述
就是一个期望+一个类似正则项的东西,而非常明显看出来,这个期望是服从策略theta’的,也就是说s,a分布和策略相关,因此是on-policy的。

简单说下PPO:PPO用两个网络表示策略,一个是theta’一个是theta,用theta’网络的策略采样reward,得到的reward给theta的网络梯度下降。看起来怎么用了两个策略? 其实两个策略最后慢慢收敛到一起的,是一个策略。如果是off-policy是完全和策略无关的。

相关内容

热门资讯

保存时出现了1个错误,导致这篇... 当保存文章时出现错误时,可以通过以下步骤解决问题:查看错误信息:查看错误提示信息可以帮助我们了解具体...
汇川伺服电机位置控制模式参数配... 1. 基本控制参数设置 1)设置位置控制模式   2)绝对值位置线性模...
不能访问光猫的的管理页面 光猫是现代家庭宽带网络的重要组成部分,它可以提供高速稳定的网络连接。但是,有时候我们会遇到不能访问光...
表格中数据未显示 当表格中的数据未显示时,可能是由于以下几个原因导致的:HTML代码问题:检查表格的HTML代码是否正...
本地主机上的图像未显示 问题描述:在本地主机上显示图像时,图像未能正常显示。解决方法:以下是一些可能的解决方法,具体取决于问...
表格列调整大小出现问题 问题描述:表格列调整大小出现问题,无法正常调整列宽。解决方法:检查表格的布局方式是否正确。确保表格使...
不一致的条件格式 要解决不一致的条件格式问题,可以按照以下步骤进行:确定条件格式的规则:首先,需要明确条件格式的规则是...
Android|无法访问或保存... 这个问题可能是由于权限设置不正确导致的。您需要在应用程序清单文件中添加以下代码来请求适当的权限:此外...
【NI Multisim 14...   目录 序言 一、工具栏 🍊1.“标准”工具栏 🍊 2.视图工具...
银河麒麟V10SP1高级服务器... 银河麒麟高级服务器操作系统简介: 银河麒麟高级服务器操作系统V10是针对企业级关键业务...